Structural stability and thermodynamics of artistic composition.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
San To Chan, Eliot Fried
{"title":"Structural stability and thermodynamics of artistic composition.","authors":"San To Chan, Eliot Fried","doi":"10.1073/pnas.2406735121","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the way that digital artists zoom out of the canvas to assess the visual impact of their works, we introduce a conceptually simple yet effective metric for quantifying the clarity of digital images. This metric contrasts original images with progressively \"melted\" counterparts, produced by randomly flipping adjacent pixel pairs. It measures the presence of stable structures, assigning the value zero to completely uniform or random images and finite values for those with discernible patterns. This metric respects the color diversity of the original image and withstands image compression and color quantization. Its suitability for diverse image analysis problems is demonstrated through its effective evaluation of textural images, the identification of structural transitions in physical systems like the Potts model, and its consistency with color theory in digital arts. This allows us to demonstrate that color in visual art functions as a state variable, akin to the spin configuration in magnets, driving artistic designs to transition between states with distinct clarity. When combined with the Shannon entropy, which quantifies color diversity, the structural stability metric can serve as a navigation tool for artists to explore pathways on the complex structural information landscape toward the completion of their artwork. As a practical demonstration, we apply our metric to refine and optimize an emote design for a video game. The structural stability metric emerges as a versatile tool for extracting nuanced structural information from digital images, which may enhance decision-making and data analysis across scientific and creative domains.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2406735121"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2406735121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the way that digital artists zoom out of the canvas to assess the visual impact of their works, we introduce a conceptually simple yet effective metric for quantifying the clarity of digital images. This metric contrasts original images with progressively "melted" counterparts, produced by randomly flipping adjacent pixel pairs. It measures the presence of stable structures, assigning the value zero to completely uniform or random images and finite values for those with discernible patterns. This metric respects the color diversity of the original image and withstands image compression and color quantization. Its suitability for diverse image analysis problems is demonstrated through its effective evaluation of textural images, the identification of structural transitions in physical systems like the Potts model, and its consistency with color theory in digital arts. This allows us to demonstrate that color in visual art functions as a state variable, akin to the spin configuration in magnets, driving artistic designs to transition between states with distinct clarity. When combined with the Shannon entropy, which quantifies color diversity, the structural stability metric can serve as a navigation tool for artists to explore pathways on the complex structural information landscape toward the completion of their artwork. As a practical demonstration, we apply our metric to refine and optimize an emote design for a video game. The structural stability metric emerges as a versatile tool for extracting nuanced structural information from digital images, which may enhance decision-making and data analysis across scientific and creative domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信