Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ning Zhang, Damini Sood, Spencer C Guo, Nanhao Chen, Adam Antoszewski, Tegan Marianchuk, Supratim Dey, Yunxian Xiao, Lu Hong, Xiangda Peng, Michael Baxa, Carrie Partch, Lee-Ping Wang, Tobin R Sosnick, Aaron R Dinner, Andy LiWang
{"title":"Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.","authors":"Ning Zhang, Damini Sood, Spencer C Guo, Nanhao Chen, Adam Antoszewski, Tegan Marianchuk, Supratim Dey, Yunxian Xiao, Lu Hong, Xiangda Peng, Michael Baxa, Carrie Partch, Lee-Ping Wang, Tobin R Sosnick, Aaron R Dinner, Andy LiWang","doi":"10.1073/pnas.2412327121","DOIUrl":null,"url":null,"abstract":"<p><p>The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition in a construct optimized for NMR studies. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both partially and completely unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2412327121"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412327121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition in a construct optimized for NMR studies. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both partially and completely unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.

生物钟蛋白KaiB的温度依赖性折叠开关机制。
蓝藻生物钟的振荡器依赖于KaiB蛋白在稳定基态折叠(gsKaiB)和不稳定折叠开关折叠(fsKaiB)之间可逆切换的能力。罕见的由KaiB引起的折叠开关事件为该平动后振荡器的负反馈回路提供了临界延迟。在本研究中,我们通过实验和计算研究了折叠开关的温度依赖性及其机制。我们证明,与fsKaiB相比,gsKaiB的稳定性随着温度的升高而增加,并且在为核磁共振研究优化的结构中,gsKaiB→fsKaiB转变的Q10值比反向转变的Q10值小近三倍。模拟和自然状态氢氘交换核磁共振实验表明,折叠开关可以涉及部分和完全展开的中间体。模拟结果表明,折叠开关的过渡态与保守的脯氨酸在最快速交换区域的异构化相一致,并通过实验证实脯氨酸异构化是折叠开关的限速步骤。我们通过动力学模型探讨了我们的结果对温度补偿的影响,温度补偿是生物钟的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信