Metabolic inhibition induces pyroptosis in uveal melanoma.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin
{"title":"Metabolic inhibition induces pyroptosis in uveal melanoma.","authors":"Scott D Varney, Dan A Erkes, Glenn L Mersky, Manal U Mustafa, Vivian Chua, Inna Chervoneva, Timothy J Purwin, Emad Alnemri, Andrew E Aplin","doi":"10.1158/1541-7786.MCR-24-0508","DOIUrl":null,"url":null,"abstract":"<p><p>Few treatment options are available for metastatic uveal melanoma (UM) patients. Although the bispecific tebentafusp is FDA-approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of UM. Treatment options that improve the recognition of UM by the immune system may be key to reducing disease burden. We investigated whether UM has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that UM expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8 (CASP1, 3, 4, and 8), and ninjurin1 (NINJ1). We induced cleavage of gasdermins in UM cell lines treated with metabolic inhibitors. In particular, the CPT1 inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage and the release of HMGB1 and IL-1β, indicating that the observed cleavage of gasdermins led to pyroptosis. Importantly, a gene-signature reflecting CPT1A activity correlated with poor prognosis in UM patients and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was GSDME-dependent, but GSDMD-independent and a pyroptosis gene-signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of UM patients. Together, these data show that metabolic inhibitors can induce pyroptosis in UM cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in metastatic UM patients. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Few treatment options are available for metastatic uveal melanoma (UM) patients. Although the bispecific tebentafusp is FDA-approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of UM. Treatment options that improve the recognition of UM by the immune system may be key to reducing disease burden. We investigated whether UM has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that UM expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8 (CASP1, 3, 4, and 8), and ninjurin1 (NINJ1). We induced cleavage of gasdermins in UM cell lines treated with metabolic inhibitors. In particular, the CPT1 inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage and the release of HMGB1 and IL-1β, indicating that the observed cleavage of gasdermins led to pyroptosis. Importantly, a gene-signature reflecting CPT1A activity correlated with poor prognosis in UM patients and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was GSDME-dependent, but GSDMD-independent and a pyroptosis gene-signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of UM patients. Together, these data show that metabolic inhibitors can induce pyroptosis in UM cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in metastatic UM patients. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信