{"title":"Predicting the biomechanical behavior of lumbar intervertebral Discs: A comparative finite element analysis of a novel artificial disc design","authors":"Ashutosh Khanna , Pushpdant Jain , C.P. Paul","doi":"10.1016/j.jocn.2024.110960","DOIUrl":null,"url":null,"abstract":"<div><div>Osseointegration along with better mimicry of natural bone behaviour addresses the long-term performance of artificial intervertebral disc prosthesis. Here the effect of a novel artificial intervertebral disc geometry on stress, deformation and strain on lumbar segments to restore movement of the spine was investigated. The process involved, using CT image data, and solid modelling, simulation-driven design and finite element (FE) analysis, hexahedral mesh sensitivity analysis, implant placements. The range of motion (ROM) was calculated using an ANSYS deformation probe. The intact lumbar spine model established was compared with two implants, replacement at segment L4-L5 level, and biomechanical results were compared using axial loads of 500 N, 800 N, 1000 N and 10Nm moment. The two lumbosacral FE models, a novel implant Titanium Conix (TIC) and another FDA approved SB Charite™ (SBC) implant were considered. Novel TIC implant geometry exhibited comparable ROM values in four physiological motions, which were comparable to as required for restoring natural motion. The result shows that the proposed TIC observed the deformation during flexion, extension, bending and twist as 3.43 mm, 3.19 mm, 3.33 mm and 3.48 mm respectively. Similarly strain of 0.01 during flexion, 0.02 during extension, 0.01 during bending and 0.02 during twist. The implants designed in this study demonstrate the suitability of titanium alloy in endplates and annulus. The FE models in the study with their biomechanical parameters can be considered before clinical implementation of any implants, pre-surgery evaluations, implant placement simulations, postsurgical response, follow-up revisions, implant customization and manufacturing.</div></div>","PeriodicalId":15487,"journal":{"name":"Journal of Clinical Neuroscience","volume":"132 ","pages":"Article 110960"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967586824004995","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osseointegration along with better mimicry of natural bone behaviour addresses the long-term performance of artificial intervertebral disc prosthesis. Here the effect of a novel artificial intervertebral disc geometry on stress, deformation and strain on lumbar segments to restore movement of the spine was investigated. The process involved, using CT image data, and solid modelling, simulation-driven design and finite element (FE) analysis, hexahedral mesh sensitivity analysis, implant placements. The range of motion (ROM) was calculated using an ANSYS deformation probe. The intact lumbar spine model established was compared with two implants, replacement at segment L4-L5 level, and biomechanical results were compared using axial loads of 500 N, 800 N, 1000 N and 10Nm moment. The two lumbosacral FE models, a novel implant Titanium Conix (TIC) and another FDA approved SB Charite™ (SBC) implant were considered. Novel TIC implant geometry exhibited comparable ROM values in four physiological motions, which were comparable to as required for restoring natural motion. The result shows that the proposed TIC observed the deformation during flexion, extension, bending and twist as 3.43 mm, 3.19 mm, 3.33 mm and 3.48 mm respectively. Similarly strain of 0.01 during flexion, 0.02 during extension, 0.01 during bending and 0.02 during twist. The implants designed in this study demonstrate the suitability of titanium alloy in endplates and annulus. The FE models in the study with their biomechanical parameters can be considered before clinical implementation of any implants, pre-surgery evaluations, implant placement simulations, postsurgical response, follow-up revisions, implant customization and manufacturing.
期刊介绍:
This International journal, Journal of Clinical Neuroscience, publishes articles on clinical neurosurgery and neurology and the related neurosciences such as neuro-pathology, neuro-radiology, neuro-ophthalmology and neuro-physiology.
The journal has a broad International perspective, and emphasises the advances occurring in Asia, the Pacific Rim region, Europe and North America. The Journal acts as a focus for publication of major clinical and laboratory research, as well as publishing solicited manuscripts on specific subjects from experts, case reports and other information of interest to clinicians working in the clinical neurosciences.