{"title":"ECMO-weaning facilitated by neurally adjusted ventilatory assist (NAVA): a case for principal clarification.","authors":"F Heinold, O Moerer, L O Harnisch","doi":"10.1007/s10047-024-01484-6","DOIUrl":null,"url":null,"abstract":"<p><p>The use of veno-venous extracorporeal membrane oxygenation (VV-ECMO) has become increasingly prevalent, particularly in respiratory disease pandemics such as H1N1-influenza and SARS-CoV-2. This surge has emphasized the importance of clear therapy recommendations, improved accessibility to ECMO technology, established ECMO teams, and structured networks to ensure access to specialized care throughout the course of the disease for patients with severe ARDS. Although the initiation criteria for VV-ECMO are well defined, treatment strategies while on ECMO regarding e.g., ventilator management or ECMO weaning strategies remain variable and with lack of consensus. NAVA (Neurally Adjusted Ventilatory Assist), as an assisted mechanical ventilation modality, offers real-time electromyographic feedback, which has been shown to enhance prolonged weaning processes from mechanical ventilation. We present a case of penetrating thoracic trauma complicated by ARDS, successfully managed with VV-ECMO. NAVA was employed to monitor and facilitate ECMO. This approach integrates ECMO weaning with ventilation settings, considering both gas exchange lung function, such as carbon dioxide removal, and respiratory mechanics in the form of neuromuscular coupling. This is a new approach to VV-ECMO weaning. More research is planned to validate the efficacy of this method in conjunction with additional parameters, such as diaphragm activity evaluated sonographically in a randomized design. This case underscores the potential of NAVA in VV-ECMO weaning, offering a promising avenue for optimizing patient care and outcomes.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01484-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of veno-venous extracorporeal membrane oxygenation (VV-ECMO) has become increasingly prevalent, particularly in respiratory disease pandemics such as H1N1-influenza and SARS-CoV-2. This surge has emphasized the importance of clear therapy recommendations, improved accessibility to ECMO technology, established ECMO teams, and structured networks to ensure access to specialized care throughout the course of the disease for patients with severe ARDS. Although the initiation criteria for VV-ECMO are well defined, treatment strategies while on ECMO regarding e.g., ventilator management or ECMO weaning strategies remain variable and with lack of consensus. NAVA (Neurally Adjusted Ventilatory Assist), as an assisted mechanical ventilation modality, offers real-time electromyographic feedback, which has been shown to enhance prolonged weaning processes from mechanical ventilation. We present a case of penetrating thoracic trauma complicated by ARDS, successfully managed with VV-ECMO. NAVA was employed to monitor and facilitate ECMO. This approach integrates ECMO weaning with ventilation settings, considering both gas exchange lung function, such as carbon dioxide removal, and respiratory mechanics in the form of neuromuscular coupling. This is a new approach to VV-ECMO weaning. More research is planned to validate the efficacy of this method in conjunction with additional parameters, such as diaphragm activity evaluated sonographically in a randomized design. This case underscores the potential of NAVA in VV-ECMO weaning, offering a promising avenue for optimizing patient care and outcomes.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.