Novel bis-benzimidazole-triazole hybrids: anticancer study, in silico approaches, and mechanistic investigation.

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL
Future medicinal chemistry Pub Date : 2025-01-01 Epub Date: 2024-12-13 DOI:10.1080/17568919.2024.2437980
Moataz A Soliman, Hany E A Ahmed, Elsayed H Eltamany, Ahmed T A Boraei, Ateyatallah Aljuhani, Samir A Salama, Read Alghamdi, Ahmed K B Aljohani, Mohammed Almaghrabi, Mohamed R Aouad
{"title":"Novel bis-benzimidazole-triazole hybrids: anticancer study, in silico approaches, and mechanistic investigation.","authors":"Moataz A Soliman, Hany E A Ahmed, Elsayed H Eltamany, Ahmed T A Boraei, Ateyatallah Aljuhani, Samir A Salama, Read Alghamdi, Ahmed K B Aljohani, Mohammed Almaghrabi, Mohamed R Aouad","doi":"10.1080/17568919.2024.2437980","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Benzimidazole-triazole conjugates are very active hotspot for design and synthesis of promising anticancer agents. The target analogs showed potent and selective cytotoxicity over different cancer cell lines for breast and lung ones.</p><p><strong>Materials & methods: </strong>A new series of bis-1,4-disubstituted-1,2,3-triazoles moieties conjugated with a 2-mercapto-benzimidazole 4a-h and 7a-g was synthesized via the click cycloaddition (CuAAC) reaction. The synthesized triazoles were characterized using several spectroscopic tools. In addition, they were tested against variable cell lines representing different cancer types; HepG-2, MCF-7, HCT-116, and A-549. Computational experiments were introduced for understanding their structure-activity relationships.</p><p><strong>Results & conclusion: </strong>The data revealed the outperformance of 7a-g analogs over 4a-h one with very effective IC<sub>50</sub> values; 4-13 µg/mL compared to the reference drugs. Moreover, detailed mechanistic analyses showed potent Aurora-A Kinase expression for the most active analogs 7a and 7d exhibiting IC<sub>50</sub>; 3.5 and 5.3 over the control cells 8 ng/mL respectively. Additionally, based on their Aurora-A Kinase inhibitory activity, compound 7a was promising in apoptosis induction and cell cycle arrest. Molecular docking studies with Aurora-A Kinase revealed binding behaviors similar to the co-crystallized ligand sunitinib. Finally, this scaffold exhibits cytotoxic activity via apoptosis, enzyme downregulation, and suppression of cell division.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"93-107"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2437980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Benzimidazole-triazole conjugates are very active hotspot for design and synthesis of promising anticancer agents. The target analogs showed potent and selective cytotoxicity over different cancer cell lines for breast and lung ones.

Materials & methods: A new series of bis-1,4-disubstituted-1,2,3-triazoles moieties conjugated with a 2-mercapto-benzimidazole 4a-h and 7a-g was synthesized via the click cycloaddition (CuAAC) reaction. The synthesized triazoles were characterized using several spectroscopic tools. In addition, they were tested against variable cell lines representing different cancer types; HepG-2, MCF-7, HCT-116, and A-549. Computational experiments were introduced for understanding their structure-activity relationships.

Results & conclusion: The data revealed the outperformance of 7a-g analogs over 4a-h one with very effective IC50 values; 4-13 µg/mL compared to the reference drugs. Moreover, detailed mechanistic analyses showed potent Aurora-A Kinase expression for the most active analogs 7a and 7d exhibiting IC50; 3.5 and 5.3 over the control cells 8 ng/mL respectively. Additionally, based on their Aurora-A Kinase inhibitory activity, compound 7a was promising in apoptosis induction and cell cycle arrest. Molecular docking studies with Aurora-A Kinase revealed binding behaviors similar to the co-crystallized ligand sunitinib. Finally, this scaffold exhibits cytotoxic activity via apoptosis, enzyme downregulation, and suppression of cell division.

新型双苯并咪唑-三唑杂交体:抗癌研究、计算机方法和机制研究。
目的:苯并咪唑-三唑共轭物是设计和合成有前景的抗癌剂的一个非常活跃的热点。材料与方法:通过点击环化反应(CuAAC)合成了一系列新的双-1,4-二取代-1,2,3-三唑与 2-巯基苯并咪唑 4a-h 和 7a-g。合成的三唑通过多种光谱工具进行了表征。此外,还对代表不同癌症类型的不同细胞系(HepG-2、MCF-7、HCT-116 和 A-549)进行了测试。为了解它们的结构-活性关系,还引入了计算实验:数据显示,7a-g 类似物的 IC50 值(4-13 µg/mL)优于 4a-h 类似物的 IC50 值(4-13 µg/mL)。此外,详细的机理分析表明,最有效的类似物 7a 和 7d 的 Aurora-A 激酶表达能力很强,IC50 值分别为 3.5 和 5.3(对照细胞为 8 ng/mL)。此外,基于其 Aurora-A 激酶抑制活性,化合物 7a 在诱导细胞凋亡和抑制细胞周期方面也很有前景。与 Aurora-A 激酶的分子对接研究显示,其结合行为与共晶体配体舒尼替尼相似。最后,该支架通过细胞凋亡、酶下调和抑制细胞分裂表现出细胞毒性活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信