Exercise combined with artificial gravity and exercise only countermeasures prevent organ and blood vessel morpholgical changes induced by 55 days HDT bedrest.
{"title":"Exercise combined with artificial gravity and exercise only countermeasures prevent organ and blood vessel morpholgical changes induced by 55 days HDT bedrest.","authors":"P Arbeille, K Zuj, L Guillon","doi":"10.3389/fphys.2024.1482860","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Changes in blood vessel properties have been identified with confinement, spaceflight, bedrest, and dry immersion. Subsequently, it was suspected that other organs may also be affected in these extreme environments. The purposes of the current study were to determine the effects of head-down bedrest (HDT) on cardiovascular and organ measurements made using ultrasound imaging similar to that currently available on the International Space Station, and to evaluate the efficacy of two different countermeasure protocols in preventing any observed changes in the ultrasound measurements with HDT.</p><p><strong>Methods: </strong>Ultrasound measures were conducted on 24 individuals (3 groups of 8) pre HDT and on day 55 of the HDT. The control group (C°) remained in passive HDT for the 55 days, the C1 group performed aerobic exercise daily (EX), and the C2 group practiced aerobic exercise under artificial gravity conditions (EX-AG). Fifteen parameters were measured on 10 different organs and blood vessels including the right common carotid artery, abdominal aorta, right tibial artery, left ventricle, right jugular vein, portal vein, right kidney, cervical and lumbar vertebra, and the vastus intermedius muscle.</p><p><strong>Results: </strong>HDT resulted in changes for many of the parameters investigated. Observed changes in carotid IMT and distensibility, cardiac ejection fraction, portal vein diameter, and vastus intermedius muscle thickness were attenuated with EX and EX-AG, with EX-AG having a greater effect than exercise alone on measures of carotid distensibility.</p><p><strong>Conclusion: </strong>Results from this study indicate changes in many structures assessed with ultrasound imaging after 55 days of HDT bedrest with some changes being attenuated with the two investigated countermeasure protocols.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1482860"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1482860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Changes in blood vessel properties have been identified with confinement, spaceflight, bedrest, and dry immersion. Subsequently, it was suspected that other organs may also be affected in these extreme environments. The purposes of the current study were to determine the effects of head-down bedrest (HDT) on cardiovascular and organ measurements made using ultrasound imaging similar to that currently available on the International Space Station, and to evaluate the efficacy of two different countermeasure protocols in preventing any observed changes in the ultrasound measurements with HDT.
Methods: Ultrasound measures were conducted on 24 individuals (3 groups of 8) pre HDT and on day 55 of the HDT. The control group (C°) remained in passive HDT for the 55 days, the C1 group performed aerobic exercise daily (EX), and the C2 group practiced aerobic exercise under artificial gravity conditions (EX-AG). Fifteen parameters were measured on 10 different organs and blood vessels including the right common carotid artery, abdominal aorta, right tibial artery, left ventricle, right jugular vein, portal vein, right kidney, cervical and lumbar vertebra, and the vastus intermedius muscle.
Results: HDT resulted in changes for many of the parameters investigated. Observed changes in carotid IMT and distensibility, cardiac ejection fraction, portal vein diameter, and vastus intermedius muscle thickness were attenuated with EX and EX-AG, with EX-AG having a greater effect than exercise alone on measures of carotid distensibility.
Conclusion: Results from this study indicate changes in many structures assessed with ultrasound imaging after 55 days of HDT bedrest with some changes being attenuated with the two investigated countermeasure protocols.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.