CSF levels of brain-derived proteins correlate with brain ventricular volume in cognitively healthy 70-year-olds.

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Sofia Bergström, Sára Mravinacová, Olof Lindberg, Anna Zettergren, Eric Westman, Lars-Olof Wahlund, Kaj Blennow, Henrik Zetterberg, Silke Kern, Ingmar Skoog, Anna Månberg
{"title":"CSF levels of brain-derived proteins correlate with brain ventricular volume in cognitively healthy 70-year-olds.","authors":"Sofia Bergström, Sára Mravinacová, Olof Lindberg, Anna Zettergren, Eric Westman, Lars-Olof Wahlund, Kaj Blennow, Henrik Zetterberg, Silke Kern, Ingmar Skoog, Anna Månberg","doi":"10.1186/s12014-024-09517-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The effect of varying brain ventricular volume on the cerebrospinal fluid (CSF) proteome has been discussed as possible confounding factors in comparative protein level analyses. However, the relationship between CSF volume and protein levels remains largely unexplored. Moreover, the few existing studies provide conflicting findings, indicating the need for further research.</p><p><strong>Methods: </strong>Here, we explored the association between levels of 88 pre-selected CSF proteins and ventricular volume derived from magnetic resonance imaging (MRI) measurements in 157 cognitively healthy 70-year-olds from the H70 Gothenburg Birth Cohort Studies, including individuals with and without pathological levels of Alzheimer's disease (AD) CSF markers (n = 123 and 34, respectively). Both left and right lateral, the inferior horn as well as the third and the fourth ventricular volumes were measured. Different antibody-based methods were employed for the protein measurements, with most being analyzed using a multiplex bead-based microarray technology. Furthermore, the associations between the protein levels and cortical thickness, fractional anisotropy, and mean diffusivity were assessed.</p><p><strong>Results: </strong>CSF levels of many brain-derived proteins correlated with ventricular volumes in A-T- individuals, with lower levels in individuals with larger ventricles. The strongest negative correlations with total ventricular volume were observed for neurocan (NCAN) and neurosecretory protein VGF (rho = -0.34 for both). Significant negative correlations were observed also for amyloid beta (Ab) 38, Ab40, total tau (t-tau), and phosphorylated tau (p-tau), with correlation ranging between - 0.34 and - 0.28, while no association was observed between ventricular volumes and Ab42 or neurofilament light chain (NfL). Proteins with negative correlations to ventricular volumes further demonstrated negative correlations to mean diffusivity and positive correlation to fractional anisotropy. However, only weak or no correlations were observed between the CSF protein levels and cortical thickness. A + T + individuals demonstrated higher CSF protein levels compared to A-T- individuals with the most significant differences observed for neurogranin (NRGN) and synuclein beta (SNCB).</p><p><strong>Conclusions: </strong>Our findings suggest that the levels of many brain-derived proteins in CSF may be subjected to dilution effects depending on the size of the brain ventricles in healthy individuals without AD pathology. This phenomenon could potentially contribute to the inter-individual variations observed in CSF proteomic studies.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"65"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-024-09517-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The effect of varying brain ventricular volume on the cerebrospinal fluid (CSF) proteome has been discussed as possible confounding factors in comparative protein level analyses. However, the relationship between CSF volume and protein levels remains largely unexplored. Moreover, the few existing studies provide conflicting findings, indicating the need for further research.

Methods: Here, we explored the association between levels of 88 pre-selected CSF proteins and ventricular volume derived from magnetic resonance imaging (MRI) measurements in 157 cognitively healthy 70-year-olds from the H70 Gothenburg Birth Cohort Studies, including individuals with and without pathological levels of Alzheimer's disease (AD) CSF markers (n = 123 and 34, respectively). Both left and right lateral, the inferior horn as well as the third and the fourth ventricular volumes were measured. Different antibody-based methods were employed for the protein measurements, with most being analyzed using a multiplex bead-based microarray technology. Furthermore, the associations between the protein levels and cortical thickness, fractional anisotropy, and mean diffusivity were assessed.

Results: CSF levels of many brain-derived proteins correlated with ventricular volumes in A-T- individuals, with lower levels in individuals with larger ventricles. The strongest negative correlations with total ventricular volume were observed for neurocan (NCAN) and neurosecretory protein VGF (rho = -0.34 for both). Significant negative correlations were observed also for amyloid beta (Ab) 38, Ab40, total tau (t-tau), and phosphorylated tau (p-tau), with correlation ranging between - 0.34 and - 0.28, while no association was observed between ventricular volumes and Ab42 or neurofilament light chain (NfL). Proteins with negative correlations to ventricular volumes further demonstrated negative correlations to mean diffusivity and positive correlation to fractional anisotropy. However, only weak or no correlations were observed between the CSF protein levels and cortical thickness. A + T + individuals demonstrated higher CSF protein levels compared to A-T- individuals with the most significant differences observed for neurogranin (NRGN) and synuclein beta (SNCB).

Conclusions: Our findings suggest that the levels of many brain-derived proteins in CSF may be subjected to dilution effects depending on the size of the brain ventricles in healthy individuals without AD pathology. This phenomenon could potentially contribute to the inter-individual variations observed in CSF proteomic studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical proteomics
Clinical proteomics BIOCHEMICAL RESEARCH METHODS-
CiteScore
5.80
自引率
2.60%
发文量
37
审稿时长
17 weeks
期刊介绍: Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信