{"title":"Application of dynamic navigation technology in oral and maxillofacial surgery.","authors":"Fushi Wang, Xinjie Cai, Wei Sun, Chen Chen, Liuyan Meng","doi":"10.1007/s00784-024-06098-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Dynamic navigation (DN) technology has ushered in a paradigm shift in dentistry, revolutionizing the precision of diverse procedures in oral and craniofacial surgery. This comprehensive review aims to review the manifold applications of DN, including implantology, endodontics, oral and dental surgeries, and other dental disciplines.</p><p><strong>Materials and methods: </strong>A thorough search of the online databases PubMed and Google Scholar was conducted up to March 2024. Publications associated with DN in the field of oral and maxillofacial surgery were sourced.</p><p><strong>Results: </strong>Narrative literature review.</p><p><strong>Conclusions: </strong>DN harnesses cone beam computerized tomography imaging, virtual design software, and motion tracking technology to construct a virtual model of the patient's oral cavity, affording real-time instrument tracking during procedures. Notably, in implantology, DN facilitates implant placement, enhances safety measures, and augments procedural efficiency. The application of DN in sinus lift procedures contributes to improved surgical outcomes and reduced complications. Within endodontics, DN guides root canal treatment (RCT), retreatment of failed RCT, and endodontic microsurgery, ensuring conservative access cavities and precise canal location. Beyond these, the versatility of DN extends to encompass maxillomandibular and orthognathic surgeries, tooth extraction, removal of foreign bodies, and facial reconstruction. However, it is crucial to acknowledge potential disadvantages and error-prone scenarios as DN technologies advance.</p><p><strong>Clinical significance: </strong>DN technology empowers dentists with high accuracy, heightened safety protocols, and increased procedural efficiency, culminating in enhanced patient outcomes across various dental procedures. As DN technology further expands, its pivotal role will advance in the future of oral and maxillofacial surgery.</p>","PeriodicalId":10461,"journal":{"name":"Clinical Oral Investigations","volume":"29 1","pages":"13"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00784-024-06098-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Dynamic navigation (DN) technology has ushered in a paradigm shift in dentistry, revolutionizing the precision of diverse procedures in oral and craniofacial surgery. This comprehensive review aims to review the manifold applications of DN, including implantology, endodontics, oral and dental surgeries, and other dental disciplines.
Materials and methods: A thorough search of the online databases PubMed and Google Scholar was conducted up to March 2024. Publications associated with DN in the field of oral and maxillofacial surgery were sourced.
Results: Narrative literature review.
Conclusions: DN harnesses cone beam computerized tomography imaging, virtual design software, and motion tracking technology to construct a virtual model of the patient's oral cavity, affording real-time instrument tracking during procedures. Notably, in implantology, DN facilitates implant placement, enhances safety measures, and augments procedural efficiency. The application of DN in sinus lift procedures contributes to improved surgical outcomes and reduced complications. Within endodontics, DN guides root canal treatment (RCT), retreatment of failed RCT, and endodontic microsurgery, ensuring conservative access cavities and precise canal location. Beyond these, the versatility of DN extends to encompass maxillomandibular and orthognathic surgeries, tooth extraction, removal of foreign bodies, and facial reconstruction. However, it is crucial to acknowledge potential disadvantages and error-prone scenarios as DN technologies advance.
Clinical significance: DN technology empowers dentists with high accuracy, heightened safety protocols, and increased procedural efficiency, culminating in enhanced patient outcomes across various dental procedures. As DN technology further expands, its pivotal role will advance in the future of oral and maxillofacial surgery.
期刊介绍:
The journal Clinical Oral Investigations is a multidisciplinary, international forum for publication of research from all fields of oral medicine. The journal publishes original scientific articles and invited reviews which provide up-to-date results of basic and clinical studies in oral and maxillofacial science and medicine. The aim is to clarify the relevance of new results to modern practice, for an international readership. Coverage includes maxillofacial and oral surgery, prosthetics and restorative dentistry, operative dentistry, endodontics, periodontology, orthodontics, dental materials science, clinical trials, epidemiology, pedodontics, oral implant, preventive dentistiry, oral pathology, oral basic sciences and more.