Valorization of papaya fruit peel waste for the production of nanocellulose by Novacetimonas hansenii BMK-3.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Moniya Katyal, Rakshanda Singh, Ritu Mahajan, Anurekha Sharma, Ranjan Gupta, Neeraj K Aggarwal, Anita Yadav
{"title":"Valorization of papaya fruit peel waste for the production of nanocellulose by Novacetimonas hansenii BMK-3.","authors":"Moniya Katyal, Rakshanda Singh, Ritu Mahajan, Anurekha Sharma, Ranjan Gupta, Neeraj K Aggarwal, Anita Yadav","doi":"10.1002/bab.2706","DOIUrl":null,"url":null,"abstract":"<p><p>Nanocellulose is the renewable biopolymer produced in nature by different bacteria. The widespread use of nanocellulose in industrial processes increases the demand for this valuable biomaterial. To overcome the high cost of producing nanocellulose using the Hestrin-Schramm medium, alternative agricultural waste has been studied as a potential low-cost supply. This study investigated the optimization and physicochemical characterization of cellulose membrane obtained, utilizing a low-cost substrate--papaya peel-based medium, with Novacetimonas hansenii BMK-3.The maximum yield of nanocellulose was found at an inoculum age 24 h, inoculum size 10% (v/v), incubation time 15 days, pH 3.5, media:flask volume ratio 1:2.5, and temperature 30°C. Cellulose yield produced using the papaya peel-based medium was nearly four times more than using the Hestrin-Schramm medium. The structural and physical properties of cellulose were characterized using field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and derivative of thermogravimetric analysis. Cellulose produced using papaya peel-based medium had similar properties to cellulose produced in the Hestrin-Schramm medium. The results suggested papaya peels as a cost-effective substrate for cellulose production with enhanced yield. This study reports an eco-friendly approach for the management of papaya peels waste disposal and production of value-added product. This is the first report mentioning the valorization of papaya fruit peel waste for the production of cellulose.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2706","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocellulose is the renewable biopolymer produced in nature by different bacteria. The widespread use of nanocellulose in industrial processes increases the demand for this valuable biomaterial. To overcome the high cost of producing nanocellulose using the Hestrin-Schramm medium, alternative agricultural waste has been studied as a potential low-cost supply. This study investigated the optimization and physicochemical characterization of cellulose membrane obtained, utilizing a low-cost substrate--papaya peel-based medium, with Novacetimonas hansenii BMK-3.The maximum yield of nanocellulose was found at an inoculum age 24 h, inoculum size 10% (v/v), incubation time 15 days, pH 3.5, media:flask volume ratio 1:2.5, and temperature 30°C. Cellulose yield produced using the papaya peel-based medium was nearly four times more than using the Hestrin-Schramm medium. The structural and physical properties of cellulose were characterized using field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and derivative of thermogravimetric analysis. Cellulose produced using papaya peel-based medium had similar properties to cellulose produced in the Hestrin-Schramm medium. The results suggested papaya peels as a cost-effective substrate for cellulose production with enhanced yield. This study reports an eco-friendly approach for the management of papaya peels waste disposal and production of value-added product. This is the first report mentioning the valorization of papaya fruit peel waste for the production of cellulose.

木瓜果皮废弃物在汉斯诺瓦西单胞菌BMK-3生产纳米纤维素中的应用。
纳米纤维素是自然界中由不同细菌产生的可再生生物聚合物。纳米纤维素在工业过程中的广泛应用增加了对这种宝贵生物材料的需求。为了克服使用 Hestrin-Schramm 培养基生产纳米纤维素的高成本问题,研究人员将替代性农业废料作为一种潜在的低成本供应。本研究利用一种低成本的基质--基于木瓜皮的培养基--Novacetimonas hansenii BMK-3,研究了纤维素膜的优化和理化特性。使用木瓜皮培养基产生的纤维素产量是使用 Hestrin-Schramm 培养基的近四倍。利用场发射扫描电子显微镜、傅立叶变换红外光谱、X 射线衍射、热重分析和热重分析的衍生物对纤维素的结构和物理性质进行了表征。使用木瓜皮培养基生产的纤维素与使用 Hestrin-Schramm 培养基生产的纤维素具有相似的性质。研究结果表明,木瓜皮是一种具有成本效益的纤维素生产基质,可提高产量。这项研究报告了木瓜皮废物处理和增值产品生产的生态友好型管理方法。这是第一份关于木瓜果皮废物用于生产纤维素的价值评估报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信