{"title":"Applications of Mass Spectrometry Proteomic Methods to Immunoglobulins in the Clinical Laboratory.","authors":"David L Murray, Maria A V Willrich","doi":"10.1093/clinchem/hvae179","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunoglobulin (Ig) measurements in the clinical laboratory have been traditionally performed by nephelometry, turbidimetry, electrophoresis, and ELISA assays. Mass spectrometry (MS) measurements have the potential to provide deeper insights on the nature of these markers.</p><p><strong>Content: </strong>Different approaches-top-down, middle-down, or bottom-up-have been described for measuring specific Igs for endogenous monoclonal immunoglobulins (M-proteins) and exogenous therapeutic monoclonal antibody therapies (t-mAbs). Challenges arise in distinguishing the Ig of interest from the polyclonal Ig background. MS is emerging as a practical method to provide quantitative analysis and information about structural and clonal features that are not easily determined by current clinical laboratory methods. This review discusses clinically implemented examples, including isotyping and quantification of M-proteins and quantitation of t-mAbs within the polyclonal Ig background, as examples of how MS can enhance our detection and characterization of Igs.</p><p><strong>Summary: </strong>This review of current clinically available MS proteomic tests for Igs highlights both analytical and nonanalytical challenges for implementation. Given the new insight into Igs from these methods, it is hoped that vendors, laboratorians, healthcare providers, and payment systems can work to overcome these challenges and advance the care of patients.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"70 12","pages":"1422-1435"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Immunoglobulin (Ig) measurements in the clinical laboratory have been traditionally performed by nephelometry, turbidimetry, electrophoresis, and ELISA assays. Mass spectrometry (MS) measurements have the potential to provide deeper insights on the nature of these markers.
Content: Different approaches-top-down, middle-down, or bottom-up-have been described for measuring specific Igs for endogenous monoclonal immunoglobulins (M-proteins) and exogenous therapeutic monoclonal antibody therapies (t-mAbs). Challenges arise in distinguishing the Ig of interest from the polyclonal Ig background. MS is emerging as a practical method to provide quantitative analysis and information about structural and clonal features that are not easily determined by current clinical laboratory methods. This review discusses clinically implemented examples, including isotyping and quantification of M-proteins and quantitation of t-mAbs within the polyclonal Ig background, as examples of how MS can enhance our detection and characterization of Igs.
Summary: This review of current clinically available MS proteomic tests for Igs highlights both analytical and nonanalytical challenges for implementation. Given the new insight into Igs from these methods, it is hoped that vendors, laboratorians, healthcare providers, and payment systems can work to overcome these challenges and advance the care of patients.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.