Vincenzo Paolillo, Mahendran Jayakumar, Colton Sheperd, Andrew Tran, Stephanie Hoang, Nhu Dao, Parag Jain, Alan L Myers
{"title":"In vitro hydrolysis of areca nut xenobiotics in human liver.","authors":"Vincenzo Paolillo, Mahendran Jayakumar, Colton Sheperd, Andrew Tran, Stephanie Hoang, Nhu Dao, Parag Jain, Alan L Myers","doi":"10.1016/j.dmpk.2024.101039","DOIUrl":null,"url":null,"abstract":"<p><p>Areca nut (AN) is a substance of abuse consumed by millions worldwide, in spite of established oral and systemic toxicities associated with its use. Previous research demonstrates methyl ester alkaloids in the AN, such as arecoline and guvacoline, exhibit mood-altering and toxicological effects. Nonetheless, their metabolism has not been fully elucidated in humans. In the present study, an HPLC-UV bioanalytical method was developed to evaluate the hydrolytic kinetics and clearance rates of arecoline and guvacoline in human liver microsomes (HLM) and cytosol (HLC). The bioassay was capable of quantifying arecoline and guvacoline (and carboxylate metabolites arecaidine and guvacine, respectively) with good sensitivity, accuracy, and precision. Kinetics of arecoline and guvacoline hydrolysis best followed the Michaelis-Menten model. Apparent intrinsic clearance (Cl<sub>int.in vivo</sub>) of arecoline was 57.8 ml/min/kg in HLM and 11.6 mL/min/kg in HLC, a 5-fold difference. Unexpectedly, guvacoline was dramatically less hydrolyzed than arecoline in both HLM and HLC, with Cl<sub>int.in vivo</sub> estimates of 0.654 ml/min/kg and 0.466 ml/min/kg, respectively. These results demonstrate, for the first time, arecoline undergoes significant hydrolysis with high clearance rates in the liver. Furthermore, differential tissue metabolic rates and utilization of specific esterase inhibitors unequivocally demonstrated arecoline is a substrate for CES1 and not CES2.</p>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"60 ","pages":"101039"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dmpk.2024.101039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Areca nut (AN) is a substance of abuse consumed by millions worldwide, in spite of established oral and systemic toxicities associated with its use. Previous research demonstrates methyl ester alkaloids in the AN, such as arecoline and guvacoline, exhibit mood-altering and toxicological effects. Nonetheless, their metabolism has not been fully elucidated in humans. In the present study, an HPLC-UV bioanalytical method was developed to evaluate the hydrolytic kinetics and clearance rates of arecoline and guvacoline in human liver microsomes (HLM) and cytosol (HLC). The bioassay was capable of quantifying arecoline and guvacoline (and carboxylate metabolites arecaidine and guvacine, respectively) with good sensitivity, accuracy, and precision. Kinetics of arecoline and guvacoline hydrolysis best followed the Michaelis-Menten model. Apparent intrinsic clearance (Clint.in vivo) of arecoline was 57.8 ml/min/kg in HLM and 11.6 mL/min/kg in HLC, a 5-fold difference. Unexpectedly, guvacoline was dramatically less hydrolyzed than arecoline in both HLM and HLC, with Clint.in vivo estimates of 0.654 ml/min/kg and 0.466 ml/min/kg, respectively. These results demonstrate, for the first time, arecoline undergoes significant hydrolysis with high clearance rates in the liver. Furthermore, differential tissue metabolic rates and utilization of specific esterase inhibitors unequivocally demonstrated arecoline is a substrate for CES1 and not CES2.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.