{"title":"Clinical trials, challenges, and changes in TCR-based therapeutics for hematologic malignancies.","authors":"Melinda A Biernacki, Marie Bleakley","doi":"10.1080/17474086.2024.2441962","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>T cells engineered to express antigen-specific T cell receptors (TCR; TCR-T) are a promising class of immunotherapeutic for patients with hematologic malignancies. Like chimeric antigen receptor-engineered T cells (CAR-T), TCR-T are cell products with defined specificity and composition. Unlike CAR-T, TCR-T can recognize targets arising both from intracellular and cell surface proteins and leverage the sensitivity of natural TCR signaling machinery. A growing number of TCR-T targeting various antigens in different hematologic malignancies are in early-phase clinical trials, and more are in preclinical development.</p><p><strong>Areas covered: </strong>This review covers results from early-phase TCR-T clinical trials for hematologic malignancies. Challenges in the field are reviewed, including identifying optimal targets, engaging CD4<sup>+</sup> help for CD8<sup>+</sup> T cells, and overcoming tumor-induced suppression; recent innovations to overcome these challenges are also highlighted.</p><p><strong>Expert opinion: </strong>In the future, TCR-T's promise for hematologic malignancies will be borne out in later-phase clinical trials and approvals for clinical use. Improved antigen discovery methods will help build the toolbox of targets needed for broadly applicable TCR-T. Rationally designed TCR-T modifications including incorporation of accessory receptors and gene editing will enhance TCR-T function. New hybrid receptors combining features of TCR and CAR will enter the clinic.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":"1-11"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2024.2441962","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: T cells engineered to express antigen-specific T cell receptors (TCR; TCR-T) are a promising class of immunotherapeutic for patients with hematologic malignancies. Like chimeric antigen receptor-engineered T cells (CAR-T), TCR-T are cell products with defined specificity and composition. Unlike CAR-T, TCR-T can recognize targets arising both from intracellular and cell surface proteins and leverage the sensitivity of natural TCR signaling machinery. A growing number of TCR-T targeting various antigens in different hematologic malignancies are in early-phase clinical trials, and more are in preclinical development.
Areas covered: This review covers results from early-phase TCR-T clinical trials for hematologic malignancies. Challenges in the field are reviewed, including identifying optimal targets, engaging CD4+ help for CD8+ T cells, and overcoming tumor-induced suppression; recent innovations to overcome these challenges are also highlighted.
Expert opinion: In the future, TCR-T's promise for hematologic malignancies will be borne out in later-phase clinical trials and approvals for clinical use. Improved antigen discovery methods will help build the toolbox of targets needed for broadly applicable TCR-T. Rationally designed TCR-T modifications including incorporation of accessory receptors and gene editing will enhance TCR-T function. New hybrid receptors combining features of TCR and CAR will enter the clinic.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.