3D printed PGCL@PLA/10CSPL composite scaffolds loaded with fibronectin 1 for intervertebral disc degeneration treatment.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Weilin Zhang, Siyuan Chen, Shengbang Huang, Zhencong Li, Zhongwei Wang, Zhiwen Dai, Jinguo Liang, Hongrui Rong, Qianqian Ouyang, Weixiong Guo, Yen Wei, Jinsong Wei
{"title":"3D printed PGCL@PLA/10CSPL composite scaffolds loaded with fibronectin 1 for intervertebral disc degeneration treatment.","authors":"Weilin Zhang, Siyuan Chen, Shengbang Huang, Zhencong Li, Zhongwei Wang, Zhiwen Dai, Jinguo Liang, Hongrui Rong, Qianqian Ouyang, Weixiong Guo, Yen Wei, Jinsong Wei","doi":"10.1088/1758-5090/ad998f","DOIUrl":null,"url":null,"abstract":"<p><p>Restoration of disc height and biomechanical function is essential for intervertebral disc degeneration (IDD) treatment. Removing abnormal nucleus pulposus (NP) tissue is an important step to facilitate bony fusion during the healing process. We analyzed publicly available single-cell transcriptome data for human normal and degenerative NP to identify genes associated with NP degeneration. A novel poly(glycolide-co-caprolactone)@polylactide (PLA)-b-aniline pentamer (AP)-b-PLA/chitosan-<i>ϵ</i>-polylysine (PGCL@1PAP/10CSPL) scaffold with good biocompatibility and electroactivity was designed and fabricated as an implant for IDD treatment using 3D printing technology. The PGCL@1PAP/10CSPL scaffold exhibited superior hydrophilicity, mechanical properties, cytocompatibility, and antibacterial activity compared to PGCL. Fibronectin 1 (FN1), identified from single-cell transcriptome analysis, was loaded into the PGCL@1PAP/10CSPL scaffold to accelerate the abnormal NP degeneration.<i>In vitro</i>and<i>in vivo</i>experiments indicated that the PGCL@1PAP/10CSPL-FN1 scaffold enhanced osteogenic differentiation, promoted angiogenesis, and facilitated the removal of damaged disc tissue. This study introduces a novel implant system with desirable mechanical strength and unique bone-promoting and vascularizing properties for lumbar interbody fusion in IDD treatment.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad998f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Restoration of disc height and biomechanical function is essential for intervertebral disc degeneration (IDD) treatment. Removing abnormal nucleus pulposus (NP) tissue is an important step to facilitate bony fusion during the healing process. We analyzed publicly available single-cell transcriptome data for human normal and degenerative NP to identify genes associated with NP degeneration. A novel poly(glycolide-co-caprolactone)@polylactide (PLA)-b-aniline pentamer (AP)-b-PLA/chitosan-ϵ-polylysine (PGCL@1PAP/10CSPL) scaffold with good biocompatibility and electroactivity was designed and fabricated as an implant for IDD treatment using 3D printing technology. The PGCL@1PAP/10CSPL scaffold exhibited superior hydrophilicity, mechanical properties, cytocompatibility, and antibacterial activity compared to PGCL. Fibronectin 1 (FN1), identified from single-cell transcriptome analysis, was loaded into the PGCL@1PAP/10CSPL scaffold to accelerate the abnormal NP degeneration.In vitroandin vivoexperiments indicated that the PGCL@1PAP/10CSPL-FN1 scaffold enhanced osteogenic differentiation, promoted angiogenesis, and facilitated the removal of damaged disc tissue. This study introduces a novel implant system with desirable mechanical strength and unique bone-promoting and vascularizing properties for lumbar interbody fusion in IDD treatment.

恢复椎间盘高度和生物力学功能对于椎间盘退变(IDD)治疗至关重要。清除异常髓核组织是促进愈合过程中骨融合的重要一步。我们分析了公开的人类正常髓核和退化髓核的单细胞转录组数据,以确定与髓核退化相关的基因。我们设计了一种具有良好生物相容性和电活性的新型聚(乙二醇-共己内酯)@聚乳酸(PLA)-b-苯胺五聚体(AP)-b-PLA/壳聚糖-ϵ-聚赖氨酸(PGCL@1PAP/10CSPL)支架,并利用三维打印技术将其制作成一种用于治疗IDD的植入物。与 PGCL 相比,PGCL@1PAP/10CSPL 支架具有更优越的亲水性、机械性能、细胞相容性和抗菌活性。体外和体内实验表明,PGCL@1PAP/10CSPL-FN1 支架增强了成骨分化,促进了血管生成,并有助于移除受损的椎间盘组织。这项研究介绍了一种新型植入系统,它具有理想的机械强度和独特的促骨和血管生成特性,可用于腰椎间盘突出症(IDD)的腰椎椎间融合术治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信