An improved HPAEC-PAD method for the determination of D-glucuronic acid and 4-O-methyl-D-glucuronic acid from polymeric and oligomeric xylan.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Savvina Leontakianakou, Carl Grey, Eva Nordberg Karlsson, Roya R R Sardari
{"title":"An improved HPAEC-PAD method for the determination of D-glucuronic acid and 4-O-methyl-D-glucuronic acid from polymeric and oligomeric xylan.","authors":"Savvina Leontakianakou, Carl Grey, Eva Nordberg Karlsson, Roya R R Sardari","doi":"10.1186/s12896-024-00931-9","DOIUrl":null,"url":null,"abstract":"<p><p>Glucuronic acid (GlcA) is an abundant substituent in hardwood xylan, and it is often found in its methylated form as methyl glucuronic acid (MeGlcA). GlcA and MeGlcA are sugar acids, bound to the xylose backbone at position O-2, and their presence can affect the digestibility of the polymer. Currently, detection of released GlcA or MeGlcA from synthetic substrates such as pNP-glucuronic acid can be achieved with colorimetric assays, whereas analysis from natural substrates such as xylan is more complicated. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) with an isocratic elution profile has been proposed for quantification of uronic acids in acid-hydrolysed wood samples. However, achieving sufficient separation for comprehensive analysis of hardwood-related xylan components, particularly MeGlcA remains challenging with this methodology. This study offers modified protocols for improved separation by introducing gradient elution profiles to effectively separate hydrolysed hardwood-related compounds, including MeGlcA, and GlcA within a single analytical run. The method showed excellent reproducibility and a standard curve of MeGlcA assured first order linearity in a wide range of concentrations, making the method excellent for quantification.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"100"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00931-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glucuronic acid (GlcA) is an abundant substituent in hardwood xylan, and it is often found in its methylated form as methyl glucuronic acid (MeGlcA). GlcA and MeGlcA are sugar acids, bound to the xylose backbone at position O-2, and their presence can affect the digestibility of the polymer. Currently, detection of released GlcA or MeGlcA from synthetic substrates such as pNP-glucuronic acid can be achieved with colorimetric assays, whereas analysis from natural substrates such as xylan is more complicated. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) with an isocratic elution profile has been proposed for quantification of uronic acids in acid-hydrolysed wood samples. However, achieving sufficient separation for comprehensive analysis of hardwood-related xylan components, particularly MeGlcA remains challenging with this methodology. This study offers modified protocols for improved separation by introducing gradient elution profiles to effectively separate hydrolysed hardwood-related compounds, including MeGlcA, and GlcA within a single analytical run. The method showed excellent reproducibility and a standard curve of MeGlcA assured first order linearity in a wide range of concentrations, making the method excellent for quantification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biotechnology
BMC Biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.60
自引率
0.00%
发文量
34
审稿时长
2 months
期刊介绍: BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信