Subramaniam-Betty Sheila Devan, Rosli Ramli, Salah Abdalrazak Alshehade, Sharoen Yu Ming Lim, Noorhidayah Mamat
{"title":"Comparison of the techniques for isolating immunoassay-suitable proteins from heterogeneous fecal samples.","authors":"Subramaniam-Betty Sheila Devan, Rosli Ramli, Salah Abdalrazak Alshehade, Sharoen Yu Ming Lim, Noorhidayah Mamat","doi":"10.1016/j.ab.2024.115748","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoassays could provide valuable insights into disease biomarkers and gut health by measuring fecal proteins. However, reliably isolating intact proteins from feces is challenging due to its heterogeneous and variable composition. This paper aims to review and compare different methods for extracting proteins from fecal samples to make them suitable for immunoassay analysis. Mechanical homogenization helps release proteins by disrupting solids, while protease inhibitors preserve protein integrity. Detergents like SDS solubilize proteins by disrupting hydrophobic interactions. Organic solvents such as acetone precipitate proteins and remove contaminants. Thermal treatment denatures proteases. Immunocapture uses antibodies to purify target proteins away from interference selectively. Commercial kits contain optimized buffers but may be cost-prohibitive. Combining mechanical, chemical, and immunological techniques synergistically integrates their advantages, improving the recovery of native proteins with reduced matrix effects. While all methods have merits, tailored protocols integrating multiple mechanisms appear most promising for extracting immunoassay-suitable fecal proteins. Further optimization and standardization of such combination approaches matched to proteins and assays of interest helps expand noninvasive fecal proteome analysis.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115748"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2024.115748","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoassays could provide valuable insights into disease biomarkers and gut health by measuring fecal proteins. However, reliably isolating intact proteins from feces is challenging due to its heterogeneous and variable composition. This paper aims to review and compare different methods for extracting proteins from fecal samples to make them suitable for immunoassay analysis. Mechanical homogenization helps release proteins by disrupting solids, while protease inhibitors preserve protein integrity. Detergents like SDS solubilize proteins by disrupting hydrophobic interactions. Organic solvents such as acetone precipitate proteins and remove contaminants. Thermal treatment denatures proteases. Immunocapture uses antibodies to purify target proteins away from interference selectively. Commercial kits contain optimized buffers but may be cost-prohibitive. Combining mechanical, chemical, and immunological techniques synergistically integrates their advantages, improving the recovery of native proteins with reduced matrix effects. While all methods have merits, tailored protocols integrating multiple mechanisms appear most promising for extracting immunoassay-suitable fecal proteins. Further optimization and standardization of such combination approaches matched to proteins and assays of interest helps expand noninvasive fecal proteome analysis.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.