The Expression of SIRT3 in Endometrial Carcinoma and Its Effect on Promoting Apoptosis of Ishikawa Cells.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xinyu Zhao, Xuebei Yin
{"title":"The Expression of SIRT3 in Endometrial Carcinoma and Its Effect on Promoting Apoptosis of Ishikawa Cells.","authors":"Xinyu Zhao, Xuebei Yin","doi":"10.1007/s10528-024-10995-z","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer (EC) is one of the three most common malignancies of the female reproductive system. SIRT3 is an NAD+-dependent protein deacetylase that maintains the stability of the intracellular environment. This study aims to investigate the mechanism of SIRT3 in regulating apoptosis in endometrial cancer and further reveal the role of SIRT3 in endometrial cancer. Differential expression of SIRT3 in tumors was analyzed by GEPIA using TCGA database data. Meanwhile, mRNA and protein expression levels of SIRT3 in tissues and cells were examined using RT-qPCR, Western Blot, and immunohistochemistry. The expression of SIRT3 after estradiol (E2) stimulation of Ishikawa cells was detected using RT-qPCR and Western Blot techniques. The effect of transfection after SIRT3 knockdown and overexpression was verified using RT-qPCR and Western Blot. Flow cytometry and TUNEL assay were used to detect the effect of SIRT3 on apoptosis. Reactive oxygen species (ROS) was used to detect the effect of SIRT3 on the level of oxidative stress in cells. The expression of apoptotic protein (BAX, cleaved-Caspase 3) and autophagy protein (cyto C and LC3A) were detected in transfected Ishikawa cell. Differences analysis of TCGA database data showed that the expression of SIRT3 in EC was significantly lower than that in normal endometrial tissue. The mRNA and protein levels of SIRT3 were significantly lower in EC tissues or cells than normal controls. E2 stimulation in Ishikawa cells resulted in the down-regulation of SIRT3 expression. After transfection, SIRT3 promoted the apoptosis of Ishikawa cells and attenuated the levels of ROS. Overexpression of SIRT3 promoted apoptosis and autophagy-related proteins. Thus, high expression of SIRT3 inhibits the development of EC whereas low expression of SIRT3 may promote the progression of EC, which provides a new direction for studying the treatment of EC.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10995-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) is one of the three most common malignancies of the female reproductive system. SIRT3 is an NAD+-dependent protein deacetylase that maintains the stability of the intracellular environment. This study aims to investigate the mechanism of SIRT3 in regulating apoptosis in endometrial cancer and further reveal the role of SIRT3 in endometrial cancer. Differential expression of SIRT3 in tumors was analyzed by GEPIA using TCGA database data. Meanwhile, mRNA and protein expression levels of SIRT3 in tissues and cells were examined using RT-qPCR, Western Blot, and immunohistochemistry. The expression of SIRT3 after estradiol (E2) stimulation of Ishikawa cells was detected using RT-qPCR and Western Blot techniques. The effect of transfection after SIRT3 knockdown and overexpression was verified using RT-qPCR and Western Blot. Flow cytometry and TUNEL assay were used to detect the effect of SIRT3 on apoptosis. Reactive oxygen species (ROS) was used to detect the effect of SIRT3 on the level of oxidative stress in cells. The expression of apoptotic protein (BAX, cleaved-Caspase 3) and autophagy protein (cyto C and LC3A) were detected in transfected Ishikawa cell. Differences analysis of TCGA database data showed that the expression of SIRT3 in EC was significantly lower than that in normal endometrial tissue. The mRNA and protein levels of SIRT3 were significantly lower in EC tissues or cells than normal controls. E2 stimulation in Ishikawa cells resulted in the down-regulation of SIRT3 expression. After transfection, SIRT3 promoted the apoptosis of Ishikawa cells and attenuated the levels of ROS. Overexpression of SIRT3 promoted apoptosis and autophagy-related proteins. Thus, high expression of SIRT3 inhibits the development of EC whereas low expression of SIRT3 may promote the progression of EC, which provides a new direction for studying the treatment of EC.

SIRT3在子宫内膜癌中的表达及其促进石川细胞凋亡的作用。
子宫内膜癌(EC)是女性生殖系统三种最常见的恶性肿瘤之一。SIRT3是一种依赖NAD+的蛋白去乙酰化酶,维持细胞内环境的稳定性。本研究旨在探讨SIRT3调控子宫内膜癌细胞凋亡的机制,进一步揭示SIRT3在子宫内膜癌中的作用。使用TCGA数据库数据,通过GEPIA分析SIRT3在肿瘤中的差异表达。同时采用RT-qPCR、Western Blot、免疫组化检测组织细胞中SIRT3 mRNA和蛋白的表达水平。采用RT-qPCR和Western Blot技术检测雌二醇(E2)刺激石川细胞后SIRT3的表达。RT-qPCR和Western Blot验证SIRT3敲低和过表达后转染的效果。采用流式细胞术和TUNEL法检测SIRT3对细胞凋亡的影响。采用活性氧(ROS)检测SIRT3对细胞氧化应激水平的影响。转染Ishikawa细胞后,检测凋亡蛋白(BAX、cleaved-Caspase 3)和自噬蛋白(cyto C、LC3A)的表达。TCGA数据库数据差异分析显示,EC中SIRT3的表达明显低于正常子宫内膜组织。与正常对照组相比,EC组织或细胞中SIRT3 mRNA和蛋白水平明显降低。E2刺激Ishikawa细胞导致SIRT3表达下调。转染后,SIRT3促进石川细胞凋亡,降低ROS水平。SIRT3过表达促进细胞凋亡和自噬相关蛋白。因此,SIRT3的高表达抑制EC的发展,而SIRT3的低表达可能促进EC的进展,这为研究EC的治疗提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信