Camille Tisnerat, Jérémy Schneider, Romain Mustière, Aurélie Herrero, René Momha, Céline Damiani, Patrice Agnamey, Anne Totet, Mathieu Marchivie, Jean Guillon, Alexandra Dassonville-Klimpt, Pascal Sonnet
{"title":"Synthesis of New Enantiopure Aminoalcohol Fluorenes as Promising Antimalarial Compounds.","authors":"Camille Tisnerat, Jérémy Schneider, Romain Mustière, Aurélie Herrero, René Momha, Céline Damiani, Patrice Agnamey, Anne Totet, Mathieu Marchivie, Jean Guillon, Alexandra Dassonville-Klimpt, Pascal Sonnet","doi":"10.1002/cmdc.202400790","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report the design, synthesis, and characterisation of a new library of enantiopure aminoalcohol fluorenes, as well as their in vitro evaluation for biological properties, including activity against two strains of P. falciparum (3D7 and W2) and cytotoxicity on the HepG2 cell line. All tested compounds exhibited good to excellent antimalarial potency with IC50 values ranging from 0.7 to 70.2 nM whatever the strain. Interestingly, most compounds showed equal or better antimalarial activity compared to the reference drugs lumefantrine, mefloquine and chloroquine. Despite moderate cytotoxicity in the micromolar range, all aminoalcohol fluorenes displayed an excellent selectivity index higher than 100 due to strong antimalarial activity. Furthermore, we report in silico analyses of physicochemical and pharmacokinetic properties for all compounds, highlighting the drug-likeness of compound 10 and its promising potential for further studies.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400790"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400790","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report the design, synthesis, and characterisation of a new library of enantiopure aminoalcohol fluorenes, as well as their in vitro evaluation for biological properties, including activity against two strains of P. falciparum (3D7 and W2) and cytotoxicity on the HepG2 cell line. All tested compounds exhibited good to excellent antimalarial potency with IC50 values ranging from 0.7 to 70.2 nM whatever the strain. Interestingly, most compounds showed equal or better antimalarial activity compared to the reference drugs lumefantrine, mefloquine and chloroquine. Despite moderate cytotoxicity in the micromolar range, all aminoalcohol fluorenes displayed an excellent selectivity index higher than 100 due to strong antimalarial activity. Furthermore, we report in silico analyses of physicochemical and pharmacokinetic properties for all compounds, highlighting the drug-likeness of compound 10 and its promising potential for further studies.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.