Sulfonatocalix[4]arene-Based Scavengers for V-Type Nerve Agents with Enhanced Detoxification Activity

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dr. Patrick Gaß, Sebastiano Casalino, Prof. Dr. Franz Worek, Prof. Dr. Stefan Kubik
{"title":"Sulfonatocalix[4]arene-Based Scavengers for V-Type Nerve Agents with Enhanced Detoxification Activity","authors":"Dr. Patrick Gaß,&nbsp;Sebastiano Casalino,&nbsp;Prof. Dr. Franz Worek,&nbsp;Prof. Dr. Stefan Kubik","doi":"10.1002/chem.202404321","DOIUrl":null,"url":null,"abstract":"<p>Synthetic small molecule scavengers that rapidly detoxify nerve agents <i>in vivo</i> allow (pre)treatment of nerve agent poisoning. However, scavengers that detoxify persistent V-type nerve agents at pH 7.4 and 37 °C with sufficient efficiency are still unknown. The most promising compound to date is a monosubstituted sulfonatocalix[4]arene containing a hydroxamic acid group. This compound was used to investigate the effect of structural modifications on detoxification activity. While none of the monosubstituted calixarene derivatives considered in this context possessed higher activity than the parent compound, the disubstituted derivatives were very active, exhibiting half-lives of detoxification under the conditions of an established <i>in vitro</i> assay of &lt;1.5 min. The rate of detoxification decreased with decreasing scavenger concentration, but even at a fourfold molar excess of the scavenger, complete detoxification of 2.5 μM solutions of some nerve agents could be achieved within one hour. These disubstituted calixarene derivatives thus bring synthetic scavengers for V-type nerve agents closer to application.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"31 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202404321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chem.202404321","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic small molecule scavengers that rapidly detoxify nerve agents in vivo allow (pre)treatment of nerve agent poisoning. However, scavengers that detoxify persistent V-type nerve agents at pH 7.4 and 37 °C with sufficient efficiency are still unknown. The most promising compound to date is a monosubstituted sulfonatocalix[4]arene containing a hydroxamic acid group. This compound was used to investigate the effect of structural modifications on detoxification activity. While none of the monosubstituted calixarene derivatives considered in this context possessed higher activity than the parent compound, the disubstituted derivatives were very active, exhibiting half-lives of detoxification under the conditions of an established in vitro assay of <1.5 min. The rate of detoxification decreased with decreasing scavenger concentration, but even at a fourfold molar excess of the scavenger, complete detoxification of 2.5 μM solutions of some nerve agents could be achieved within one hour. These disubstituted calixarene derivatives thus bring synthetic scavengers for V-type nerve agents closer to application.

Abstract Image

具有增强解毒活性的v型神经毒剂的磺胺基芳烃清除剂。
合成的小分子清除剂,快速解毒神经毒剂在体内允许(预)治疗神经毒剂中毒。然而,在pH 7.4和37°C条件下,清除持久性v型神经毒剂并具有足够效率的清除剂仍然是未知的。迄今为止最有希望的化合物是含有羟基肟酸基团的单取代磺酰基芳烃。该化合物被用来研究结构修饰对解毒活性的影响。虽然在这种情况下考虑的单取代杯芳烃衍生物都没有比母体化合物具有更高的活性,但二取代衍生物非常活跃,在体外测定条件下显示出解毒的半衰期
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信