{"title":"Exosomes released from immature neurons regulate adult neural stem cell differentiation through microRNA-7a-5p.","authors":"Xiujian Sun, Yexiang Chen, Ying Zhang, Tiantian Cheng, Huisheng Peng, Yanting Sun, Jing-Gen Liu, Chi Xu","doi":"10.1093/stmcls/sxae082","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes in the hippocampal dentate gyrus (DG) are essential for modulating the cell signaling controlling the neural differentiation of hippocampal neural stem cells (NSCs), which may determine the level of hippocampal adult neurogenesis. In the present study, we found that exosomes secreted by immature neurons may promote the neuronal differentiation of mouse NSCs in vitro. By miRNA sequencing, we discovered that miR-7a-5p was significantly lower in exosomes from differentiated immature neurons than those from undifferentiated NSCs. By modulating the level of miR-7a-5p, the mimic and inhibitor of miR-7a-5p could either inhibit or promote the neuronal differentiation of NSCs, respectively. Moreover, we confirmed that miR-7a-5p affected neurogenesis by directly targeting Tcf12, a transcription factor responsible for the differentiation of NSCs. The siRNA of Tcf12 inhibited neuronal differentiation of NSCs, while overexpression of Tcf12 promoted NSC differentiation. Thus, we conclude that the miR-7a-5p content in neural exosomes is essential to the fate determination of adult hippocampal neurogenesis and that miR-7a-5p directly targets Tcf12 to regulate adult hippocampal neurogenesis.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae082","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes in the hippocampal dentate gyrus (DG) are essential for modulating the cell signaling controlling the neural differentiation of hippocampal neural stem cells (NSCs), which may determine the level of hippocampal adult neurogenesis. In the present study, we found that exosomes secreted by immature neurons may promote the neuronal differentiation of mouse NSCs in vitro. By miRNA sequencing, we discovered that miR-7a-5p was significantly lower in exosomes from differentiated immature neurons than those from undifferentiated NSCs. By modulating the level of miR-7a-5p, the mimic and inhibitor of miR-7a-5p could either inhibit or promote the neuronal differentiation of NSCs, respectively. Moreover, we confirmed that miR-7a-5p affected neurogenesis by directly targeting Tcf12, a transcription factor responsible for the differentiation of NSCs. The siRNA of Tcf12 inhibited neuronal differentiation of NSCs, while overexpression of Tcf12 promoted NSC differentiation. Thus, we conclude that the miR-7a-5p content in neural exosomes is essential to the fate determination of adult hippocampal neurogenesis and that miR-7a-5p directly targets Tcf12 to regulate adult hippocampal neurogenesis.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.