{"title":"From Implicit to Explicit: An Interaction-Reorganization Approach to Molecular Solvation Energy.","authors":"Kaifang Huang, Lili Duan, John Z H Zhang","doi":"10.1021/acs.jctc.4c01283","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate calculation of solvation energies has long fascinated researchers, but complex interactions within bulk water molecules pose significant challenges. Currently, molecular solvation energy calculations are mostly based on implicit solvent approximations in which the solvent molecules are treated as continuum dielectric media. However, the implicit solvent approach is not ideal because it lacks certain real solvation effects, such as that of the first solvation shell, etc. Here, we propose an explicit solvent approach, interaction-reorganization solvation (IRS) method, for molecular solvation energy calculations. The IRS approach achieves predictive accuracy comparable to that of the widely recognized solvation model based on the density (SMD) method and is significantly more accurate than that of the Poisson-Boltzmann/generalized Born surface area (PB/GBSA) methods. This is demonstrated in both the correlation coefficient and the mean absolute error (MAE) with respect to the experimental data. The IRS method is based on molecular dynamics simulation in explicit solvent and does not need to solve Poisson-Boltzmann or Schrödinger equations. On the other hand, the accuracy of the IRS method does depend on the accuracy of the molecular force field used in MD simulations. We expect that the IRS method will be very useful for the solvation energy calculations of molecules.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10961-10971"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate calculation of solvation energies has long fascinated researchers, but complex interactions within bulk water molecules pose significant challenges. Currently, molecular solvation energy calculations are mostly based on implicit solvent approximations in which the solvent molecules are treated as continuum dielectric media. However, the implicit solvent approach is not ideal because it lacks certain real solvation effects, such as that of the first solvation shell, etc. Here, we propose an explicit solvent approach, interaction-reorganization solvation (IRS) method, for molecular solvation energy calculations. The IRS approach achieves predictive accuracy comparable to that of the widely recognized solvation model based on the density (SMD) method and is significantly more accurate than that of the Poisson-Boltzmann/generalized Born surface area (PB/GBSA) methods. This is demonstrated in both the correlation coefficient and the mean absolute error (MAE) with respect to the experimental data. The IRS method is based on molecular dynamics simulation in explicit solvent and does not need to solve Poisson-Boltzmann or Schrödinger equations. On the other hand, the accuracy of the IRS method does depend on the accuracy of the molecular force field used in MD simulations. We expect that the IRS method will be very useful for the solvation energy calculations of molecules.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.