Alice Zanini, May Y Moshkovitz-Douvdevany, Sara M Carturan, Stefano Corradetti, Michele Ballan, Paolo Colombo, Mattia Manzolaro, Shlomo Magdassi, Giorgia Franchin
{"title":"Photocurable Sol-Gel Formulations for the Fabrication of Titanium Carbide/Carbon Nanocomposites via Digital Light Processing.","authors":"Alice Zanini, May Y Moshkovitz-Douvdevany, Sara M Carturan, Stefano Corradetti, Michele Ballan, Paolo Colombo, Mattia Manzolaro, Shlomo Magdassi, Giorgia Franchin","doi":"10.1021/acsami.4c17707","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing of carbide materials has received significant attention in the past years due to the ability to fabricate complex structures over different length scales. However, the typical limitations for powder-laden inks, such as nozzle clogging, rheological and geometric constraints, particle sedimentation, light-scattering and absorbing phenomena, narrow the range of available processes to manufacture carbide materials via conventional particle-based systems. To address these shortcomings, we have developed a one-pot synthetic route for the preparation of sol-gel-based UV-photocurable formulations, aiming at the fabrication of titanium carbide/carbon nanocomposites using digital light processing printing, pointing to potential applications in the field of nuclear physics. Carbides have attracted increasing interest as a target material for the production of radioisotopes in the ISOL facilities; however, the release of radioisotopes strictly relies on the presence of open porous structures, thus enhancing the diffusion and effusion phenomena from the target component. Through our approach, we have successfully fabricated hierarchical porous structures of TiC with a high specific surface area. By controlling the positioning of the building blocks within the framework and the supramolecular interactions during the polymerization of the molecular precursors, we achieved multiscale structuring of the network with precise control over the local arrangement of the pores.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"70828-70838"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17707","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing of carbide materials has received significant attention in the past years due to the ability to fabricate complex structures over different length scales. However, the typical limitations for powder-laden inks, such as nozzle clogging, rheological and geometric constraints, particle sedimentation, light-scattering and absorbing phenomena, narrow the range of available processes to manufacture carbide materials via conventional particle-based systems. To address these shortcomings, we have developed a one-pot synthetic route for the preparation of sol-gel-based UV-photocurable formulations, aiming at the fabrication of titanium carbide/carbon nanocomposites using digital light processing printing, pointing to potential applications in the field of nuclear physics. Carbides have attracted increasing interest as a target material for the production of radioisotopes in the ISOL facilities; however, the release of radioisotopes strictly relies on the presence of open porous structures, thus enhancing the diffusion and effusion phenomena from the target component. Through our approach, we have successfully fabricated hierarchical porous structures of TiC with a high specific surface area. By controlling the positioning of the building blocks within the framework and the supramolecular interactions during the polymerization of the molecular precursors, we achieved multiscale structuring of the network with precise control over the local arrangement of the pores.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.