Reusable EWOD-based microfluidic system for active droplet generation.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2024-12-13 DOI:10.1039/d4lc00744a
Suhee Park, Jaewook Ryu, Ki-Ho Han
{"title":"Reusable EWOD-based microfluidic system for active droplet generation.","authors":"Suhee Park, Jaewook Ryu, Ki-Ho Han","doi":"10.1039/d4lc00744a","DOIUrl":null,"url":null,"abstract":"<p><p>Droplets are essential in a wide range of microfluidic applications, but traditional passive droplet generation methods suffer from slow response speed and the need for precise flow rate adjustment. Here, we present an active droplet generation method through electrowetting-on-dielectric (EWOD). Electrowetting is a technique that uses an electric field to change the wettability of a surface. In our method, we apply an electric field to the laminar flow of the dispersed and continuous phases in a microchannel, which induces the discretization of the dispersed thread and leads to droplet formation. A key feature of the proposed active droplet-generating microfluidic device is the reusability of the EWOD actuation substrate, dramatically reducing operational costs. In addition, this approach offers significant advantages over passive methods, including fast response speeds, a wider range of droplet sizes, and greater control over droplet size. In addition, the ultrathin polymer film used in this device allows for a low electrowetting voltage, which helps to prevent damage to encapsulated cells. We believe that our active droplet generation method is a promising new method for generating droplets in microfluidic applications. It is faster, more versatile, and more precise than passive methods, making it ideal for a wide range of applications, including single-cell genomics and drug discovery.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00744a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Droplets are essential in a wide range of microfluidic applications, but traditional passive droplet generation methods suffer from slow response speed and the need for precise flow rate adjustment. Here, we present an active droplet generation method through electrowetting-on-dielectric (EWOD). Electrowetting is a technique that uses an electric field to change the wettability of a surface. In our method, we apply an electric field to the laminar flow of the dispersed and continuous phases in a microchannel, which induces the discretization of the dispersed thread and leads to droplet formation. A key feature of the proposed active droplet-generating microfluidic device is the reusability of the EWOD actuation substrate, dramatically reducing operational costs. In addition, this approach offers significant advantages over passive methods, including fast response speeds, a wider range of droplet sizes, and greater control over droplet size. In addition, the ultrathin polymer film used in this device allows for a low electrowetting voltage, which helps to prevent damage to encapsulated cells. We believe that our active droplet generation method is a promising new method for generating droplets in microfluidic applications. It is faster, more versatile, and more precise than passive methods, making it ideal for a wide range of applications, including single-cell genomics and drug discovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信