Zhongxiang Zhang, Su Chen, Yongzhi Wang, Xiaojun Li
{"title":"Comparative study on seismic response of a shallow buried underground structure in coral sand and coral gravelly sand by centrifuge modeling","authors":"Zhongxiang Zhang, Su Chen, Yongzhi Wang, Xiaojun Li","doi":"10.1016/j.tust.2024.106318","DOIUrl":null,"url":null,"abstract":"Coral sand, as a geological material for foundation filling, is widely used for reclamation projects in coral reef areas. The coral sand is characterized by a wide grain size distribution. A series of centrifuge shaking table tests were conducted to explore the seismic response of a shallow buried underground structure in saturated coral sand and coral gravelly sand. The emphasis was placed on comparing the similarities and differences in the dynamic behavior of the underground structure at the two sites. The responses of excess pore pressure, acceleration, displacement, and dynamic soil pressure of the structure were analyzed in detail. The results indicated that the underground structure in coral sand had a significant influence on the development of excess pore pressure in the surrounding soil, but this effect was not evident in coral gravelly sand due to well-drained channels. Liquefaction was observed in the soil layer around the structure in coral sand, but it did not occur in coral gravelly sand. In coral sand, the liquefaction of the soil layer at the bottom of the structure caused a significant attenuation in the acceleration of the structure. Compared to coral gravelly sand, the acceleration response of the soil layer near the bottom of the underground structure was higher in coral sand. During the shaking, the displacement pattern of the structure in coral gravelly sand was slight subsidence-slight uplift-significant subsidence, while it exhibited a significant uplift in coral sand. The maximum dynamic soil pressure distribution on the structural sidewalls presented a trapezoidal distribution, and the dynamic soil pressure had a strong connection with the development of excess pore pressure in the surrounding soil.","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"22 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tust.2024.106318","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coral sand, as a geological material for foundation filling, is widely used for reclamation projects in coral reef areas. The coral sand is characterized by a wide grain size distribution. A series of centrifuge shaking table tests were conducted to explore the seismic response of a shallow buried underground structure in saturated coral sand and coral gravelly sand. The emphasis was placed on comparing the similarities and differences in the dynamic behavior of the underground structure at the two sites. The responses of excess pore pressure, acceleration, displacement, and dynamic soil pressure of the structure were analyzed in detail. The results indicated that the underground structure in coral sand had a significant influence on the development of excess pore pressure in the surrounding soil, but this effect was not evident in coral gravelly sand due to well-drained channels. Liquefaction was observed in the soil layer around the structure in coral sand, but it did not occur in coral gravelly sand. In coral sand, the liquefaction of the soil layer at the bottom of the structure caused a significant attenuation in the acceleration of the structure. Compared to coral gravelly sand, the acceleration response of the soil layer near the bottom of the underground structure was higher in coral sand. During the shaking, the displacement pattern of the structure in coral gravelly sand was slight subsidence-slight uplift-significant subsidence, while it exhibited a significant uplift in coral sand. The maximum dynamic soil pressure distribution on the structural sidewalls presented a trapezoidal distribution, and the dynamic soil pressure had a strong connection with the development of excess pore pressure in the surrounding soil.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.