{"title":"A hybrid framework for assessing outdoor thermal comfort in large-scale urban environments","authors":"Siqi Jia, Yuhong Wang, Nyuk Hien Wong, Qihao Weng","doi":"10.1016/j.landurbplan.2024.105281","DOIUrl":null,"url":null,"abstract":"Given the challenges posed by rapid urbanization and global warming, outdoor thermal comfort has become crucial for urban livability. However, there is a lack of field survey-based research on large-scale thermal comfort assessment across continuous urban spaces. To address this gap, this study developed a framework for assessing outdoor thermal comfort. A total number of 668 onsite observations from field studies during the daytime on typical summer days were collected and used for model development. The sites were distributed in diverse local climate zones (LCZs) of Hong Kong, enabling the prediction of outdoor thermal comfort across the city under different urban settings. A neural network model was trained for predicting daytime outdoor thermal comfort based on both meteorological and morphological variables. Universal Thermal Climate Index (UTCI) was used to indicate objective measures of human thermal comfort. The model was then applied to wider urban layouts and dynamic climatic conditions. The results revealed that during extreme hot conditions, approximately 74.8% of areas experienced strong to extreme heat stress, with thermal sensations classified as hot or very hot, while the remaining 25.3% fell under moderate heat stress. High levels of thermal stress were observed in urban layouts of low-rise buildings, with LCZ 3 showing the highest extreme heat stress percentage at 61.3%, followed closely by LCZ 6 at 57.6%. In both LCZs, over 90% of areas faced strong to extreme thermal stress. These findings are crucial for identifying urban regions with high thermal stress. The framework could be valuable for cities with similar climate and geographical contexts.","PeriodicalId":54744,"journal":{"name":"Landscape and Urban Planning","volume":"86 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape and Urban Planning","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.landurbplan.2024.105281","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the challenges posed by rapid urbanization and global warming, outdoor thermal comfort has become crucial for urban livability. However, there is a lack of field survey-based research on large-scale thermal comfort assessment across continuous urban spaces. To address this gap, this study developed a framework for assessing outdoor thermal comfort. A total number of 668 onsite observations from field studies during the daytime on typical summer days were collected and used for model development. The sites were distributed in diverse local climate zones (LCZs) of Hong Kong, enabling the prediction of outdoor thermal comfort across the city under different urban settings. A neural network model was trained for predicting daytime outdoor thermal comfort based on both meteorological and morphological variables. Universal Thermal Climate Index (UTCI) was used to indicate objective measures of human thermal comfort. The model was then applied to wider urban layouts and dynamic climatic conditions. The results revealed that during extreme hot conditions, approximately 74.8% of areas experienced strong to extreme heat stress, with thermal sensations classified as hot or very hot, while the remaining 25.3% fell under moderate heat stress. High levels of thermal stress were observed in urban layouts of low-rise buildings, with LCZ 3 showing the highest extreme heat stress percentage at 61.3%, followed closely by LCZ 6 at 57.6%. In both LCZs, over 90% of areas faced strong to extreme thermal stress. These findings are crucial for identifying urban regions with high thermal stress. The framework could be valuable for cities with similar climate and geographical contexts.
期刊介绍:
Landscape and Urban Planning is an international journal that aims to enhance our understanding of landscapes and promote sustainable solutions for landscape change. The journal focuses on landscapes as complex social-ecological systems that encompass various spatial and temporal dimensions. These landscapes possess aesthetic, natural, and cultural qualities that are valued by individuals in different ways, leading to actions that alter the landscape. With increasing urbanization and the need for ecological and cultural sensitivity at various scales, a multidisciplinary approach is necessary to comprehend and align social and ecological values for landscape sustainability. The journal believes that combining landscape science with planning and design can yield positive outcomes for both people and nature.