East shift of Canada severe hail activities in a changing climate

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Zuohao Cao
{"title":"East shift of Canada severe hail activities in a changing climate","authors":"Zuohao Cao","doi":"10.1016/j.atmosres.2024.107867","DOIUrl":null,"url":null,"abstract":"Severe hail activities have significant impacts on our society because they damage property and are dangerous to people and animals. However, we have little knowledge on recent changes in geographic locations of severe hail activity center over Canada. Prior to exploring this, we have carried out Canada hail data consistency and reliability checks using solid trend analyses of three independent methods for time series of hail counts and days, and robust verifications of reported hail data by a recently developed approach of sample generation by replacement. Here, we discover for the first time a statistically significant east shift of Canada severe hail activity and total hail activity using discriminant analysis. The spatial shift is from the western portion of continental Canada during 2005–2013 to the eastern Canada with a maritime environment during 2014–2022. With increase of hail severity, the hail activities increase from the colder period 2005–2013 to the warmer period 2014–2022. Our composite analyses show that over the continental Canada, the hail activities are enriched through thermodynamically driven convective instability and precipitable water associated with the warming climate, as well as dynamically driven processes such as vertical wind shear and vertically integrated water vapor flux convergence. Over the maritime Canada with the colder condition, the hail activities are enhanced by dynamically driven moisture advection and convergence as well as vertical wind shear, thermodynamically driven process of precipitable water, and partially due to convective instability. This research promotes our understanding of climate change impact on hail activities, shedding lights on long-term hail projection, adaptation, and mitigation strategies.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"142 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107867","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Severe hail activities have significant impacts on our society because they damage property and are dangerous to people and animals. However, we have little knowledge on recent changes in geographic locations of severe hail activity center over Canada. Prior to exploring this, we have carried out Canada hail data consistency and reliability checks using solid trend analyses of three independent methods for time series of hail counts and days, and robust verifications of reported hail data by a recently developed approach of sample generation by replacement. Here, we discover for the first time a statistically significant east shift of Canada severe hail activity and total hail activity using discriminant analysis. The spatial shift is from the western portion of continental Canada during 2005–2013 to the eastern Canada with a maritime environment during 2014–2022. With increase of hail severity, the hail activities increase from the colder period 2005–2013 to the warmer period 2014–2022. Our composite analyses show that over the continental Canada, the hail activities are enriched through thermodynamically driven convective instability and precipitable water associated with the warming climate, as well as dynamically driven processes such as vertical wind shear and vertically integrated water vapor flux convergence. Over the maritime Canada with the colder condition, the hail activities are enhanced by dynamically driven moisture advection and convergence as well as vertical wind shear, thermodynamically driven process of precipitable water, and partially due to convective instability. This research promotes our understanding of climate change impact on hail activities, shedding lights on long-term hail projection, adaptation, and mitigation strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信