Impact of Arctic Sea ice anomalies on tropical cyclogenesis over the eastern North Pacific: Role of northern Atlantic Sea surface temperature anomalies

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xi Cao, Renguang Wu, Pengfei Wang, Zhibiao Wang, Lei Zhou, Shangfeng Chen, Liang Wu, Suqin Zhang, Xianling Jiang, Zhencai Du, Yifeng Dai
{"title":"Impact of Arctic Sea ice anomalies on tropical cyclogenesis over the eastern North Pacific: Role of northern Atlantic Sea surface temperature anomalies","authors":"Xi Cao, Renguang Wu, Pengfei Wang, Zhibiao Wang, Lei Zhou, Shangfeng Chen, Liang Wu, Suqin Zhang, Xianling Jiang, Zhencai Du, Yifeng Dai","doi":"10.1016/j.atmosres.2024.107844","DOIUrl":null,"url":null,"abstract":"The present study identifies a close linkage between spring (MAM) sea ice concentration (SIC) anomalies in the Greenland-Barents (GB) Seas and the tropical cyclone (TC) genesis frequency over the eastern North Pacific (ENP) in the subsequent summer and fall (JJASON) during 1979–2022. An increase in MAM GB SIC anomalies results in a decrease in subsequent JJASON ENP TC genesis frequency. The physical process for the influence of Arctic sea ice anomalies on TC formation is further examined. Detailed dynamical diagnosis reveals that a higher GB SIC during MAM results in an increase in upward shortwave radiation, leading to sea surface temperature (SST) cooling. This SST cooling triggers a teleconnection atmospheric wave train, traversing Eurasia, the northern Pacific and the northern America and reaching the northern Atlantic. The associated anomalous cyclone over mid-latitude northern Atlantic is accompanied by anomalous southwesterly winds over the subtropics, leading to SST warming in the subtropical northern Atlantic through weakening total wind speed and upward surface latent heat flux. SST warming in the subtropical northern Atlantic extends southward into the tropical Atlantic via wind-evaporation-SST feedback during the subsequent summer and autumn, which induces an anomalous zonal-vertical circulation with descending motion over the ENP. This descending motion reduces relative humidity and weakens local convection over the ENP, and thus is unfavorable for TC genesis there. This study suggests that the spring GB SIC could serve as a potential predictor of JJASON ENP TC genesis.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"8 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107844","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present study identifies a close linkage between spring (MAM) sea ice concentration (SIC) anomalies in the Greenland-Barents (GB) Seas and the tropical cyclone (TC) genesis frequency over the eastern North Pacific (ENP) in the subsequent summer and fall (JJASON) during 1979–2022. An increase in MAM GB SIC anomalies results in a decrease in subsequent JJASON ENP TC genesis frequency. The physical process for the influence of Arctic sea ice anomalies on TC formation is further examined. Detailed dynamical diagnosis reveals that a higher GB SIC during MAM results in an increase in upward shortwave radiation, leading to sea surface temperature (SST) cooling. This SST cooling triggers a teleconnection atmospheric wave train, traversing Eurasia, the northern Pacific and the northern America and reaching the northern Atlantic. The associated anomalous cyclone over mid-latitude northern Atlantic is accompanied by anomalous southwesterly winds over the subtropics, leading to SST warming in the subtropical northern Atlantic through weakening total wind speed and upward surface latent heat flux. SST warming in the subtropical northern Atlantic extends southward into the tropical Atlantic via wind-evaporation-SST feedback during the subsequent summer and autumn, which induces an anomalous zonal-vertical circulation with descending motion over the ENP. This descending motion reduces relative humidity and weakens local convection over the ENP, and thus is unfavorable for TC genesis there. This study suggests that the spring GB SIC could serve as a potential predictor of JJASON ENP TC genesis.
北极海冰异常对北太平洋东部热带气旋生成的影响:北大西洋海面温度异常的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信