Yaodong Wang, Yan Su, Xiaoping Li, Fangxi Xie, Tong Yang, Bo Wang, Bo Shen
{"title":"A new criterion and method for classifying combustion modes in a high compression ratio spark ignition engine","authors":"Yaodong Wang, Yan Su, Xiaoping Li, Fangxi Xie, Tong Yang, Bo Wang, Bo Shen","doi":"10.1016/j.enconman.2024.119395","DOIUrl":null,"url":null,"abstract":"Internal combustion engines are evolving to attain advanced combustion modes with higher percentage of compression ignition combustion. Homogeneous charge compression ignition is limited by load range and combustion stability, so hybrid combustion modes have emerged as a key research hotspot. In order to optimize hybrid combustion modes, combustion modes should be accurately identified. Therefore, this study introduces a new criterion and method to identify combustion modes. The results show that high compression ratio spark ignition engines are prone to autoignition, however, a trade-off relationship exists between high percentage of compression ignition combustion and the optimal combustion phase. As low percentage of compression ignition is favorable for engine efficiency, reduction of the combustion intensity should be considered. Under spark ignition assistance, both single-fuel and dual-fuel combustion exhibit a combustion mode where spark ignition and compression ignition occur simultaneously, which is defined as spark-assisted compression ignition combustion mode. The peak value (HP) for the second derivative of heat release rate at the onset of a combustion mode is strongly correlated with burning intensity and can be used to identify different combustion modes. The HP of spark ignition combustion is less than 1.5 J/deg<ce:sup loc=\"post\">3</ce:sup>. Spark-assisted compression ignition combustion has an HP between 1.5 J/deg<ce:sup loc=\"post\">3</ce:sup> and 5.0 J/deg<ce:sup loc=\"post\">3</ce:sup>, while the HP of premixed compression ignition combustion is at least 5.0 J/deg<ce:sup loc=\"post\">3</ce:sup>.","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"29 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enconman.2024.119395","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Internal combustion engines are evolving to attain advanced combustion modes with higher percentage of compression ignition combustion. Homogeneous charge compression ignition is limited by load range and combustion stability, so hybrid combustion modes have emerged as a key research hotspot. In order to optimize hybrid combustion modes, combustion modes should be accurately identified. Therefore, this study introduces a new criterion and method to identify combustion modes. The results show that high compression ratio spark ignition engines are prone to autoignition, however, a trade-off relationship exists between high percentage of compression ignition combustion and the optimal combustion phase. As low percentage of compression ignition is favorable for engine efficiency, reduction of the combustion intensity should be considered. Under spark ignition assistance, both single-fuel and dual-fuel combustion exhibit a combustion mode where spark ignition and compression ignition occur simultaneously, which is defined as spark-assisted compression ignition combustion mode. The peak value (HP) for the second derivative of heat release rate at the onset of a combustion mode is strongly correlated with burning intensity and can be used to identify different combustion modes. The HP of spark ignition combustion is less than 1.5 J/deg3. Spark-assisted compression ignition combustion has an HP between 1.5 J/deg3 and 5.0 J/deg3, while the HP of premixed compression ignition combustion is at least 5.0 J/deg3.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.