A data-driven hybrid scenario-based robust optimization method for relief logistics network design

IF 8.3 1区 工程技术 Q1 ECONOMICS
Mohammad Amin Amani, Samuel Asumadu Sarkodie, Jiuh-Biing Sheu, Mohammad Mahdi Nasiri, Reza Tavakkoli-Moghaddam
{"title":"A data-driven hybrid scenario-based robust optimization method for relief logistics network design","authors":"Mohammad Amin Amani, Samuel Asumadu Sarkodie, Jiuh-Biing Sheu, Mohammad Mahdi Nasiri, Reza Tavakkoli-Moghaddam","doi":"10.1016/j.tre.2024.103931","DOIUrl":null,"url":null,"abstract":"The incorporation of artificial intelligence (AI) and robust optimization methods for the planning and design of relief logistics networks under relief demand–supply uncertainty appears promising for intelligent disaster management (IDM). This research proposes a data-driven hybrid scenario-based robust (SBR) method for a mixed integer second-order cone programming (MISOCP) model that integrates machine learning with a hybrid robust optimization approach to address the above issue. A machine learning technique is utilized to cluster the casualties based on location coordinates and injury severity score. Moreover, the hybrid SBR optimization method and robust optimization based on the uncertainty sets technique are utilized to cope with uncertain parameters such as the probability of facility disruption, the number of wounded individuals, transportation time, and relief demand. Additionally, the epsilon-constraint technique is applied to seek the solution for the bi-objective model. Focusing on a real case (the Kermanshah disaster), our analytical results have demonstrated not only the validity but also the relative merits of the proposed methodology against typical stochastic and robust optimization approaches. Besides, the proposed method shows all casualties can be efficiently transported to receive medical services at a fair cost, which is crucial for disaster management.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"5 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2024.103931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of artificial intelligence (AI) and robust optimization methods for the planning and design of relief logistics networks under relief demand–supply uncertainty appears promising for intelligent disaster management (IDM). This research proposes a data-driven hybrid scenario-based robust (SBR) method for a mixed integer second-order cone programming (MISOCP) model that integrates machine learning with a hybrid robust optimization approach to address the above issue. A machine learning technique is utilized to cluster the casualties based on location coordinates and injury severity score. Moreover, the hybrid SBR optimization method and robust optimization based on the uncertainty sets technique are utilized to cope with uncertain parameters such as the probability of facility disruption, the number of wounded individuals, transportation time, and relief demand. Additionally, the epsilon-constraint technique is applied to seek the solution for the bi-objective model. Focusing on a real case (the Kermanshah disaster), our analytical results have demonstrated not only the validity but also the relative merits of the proposed methodology against typical stochastic and robust optimization approaches. Besides, the proposed method shows all casualties can be efficiently transported to receive medical services at a fair cost, which is crucial for disaster management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信