Intelligent enhancement and identification of pipeline hyperbolic signal in 3D ground penetrating radar data

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yonggang Shen, Guoxuan Ye, Tuqiao Zhang, Tingchao Yu, Yiping Zhang, Zhenwei Yu
{"title":"Intelligent enhancement and identification of pipeline hyperbolic signal in 3D ground penetrating radar data","authors":"Yonggang Shen, Guoxuan Ye, Tuqiao Zhang, Tingchao Yu, Yiping Zhang, Zhenwei Yu","doi":"10.1016/j.autcon.2024.105902","DOIUrl":null,"url":null,"abstract":"Concealed pipeline maintenance in aging residential areas faces a key challenge of discrepancies between existing data and reality. Ground-penetrating radar with dense, high-speed 3D monitoring capabilities can provide massive data, but effective analysis is difficult due to the presence of irrelevant information. To accurately extract target information, this paper first proposes a 3D data array block concept, which enhances the feature relevance of target data blocks while expanding the data volume. An energy density window method is also proposed to enhance horizontal cross-sectional pipeline signals. Furthermore, a model named PR3DCNN for pipeline recognition is developed based on 3D convolutional neural networks and residual modules. Experimental results demonstrate that PR3DCNN has a classification accuracy of 0.871 for pipelines. After strengthening with 3D data array blocks and the energy density window, the PR-EDW-B model achieves an accuracy of 0.900, and can also classify the pipeline material and calculate its orientation.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"29 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105902","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Concealed pipeline maintenance in aging residential areas faces a key challenge of discrepancies between existing data and reality. Ground-penetrating radar with dense, high-speed 3D monitoring capabilities can provide massive data, but effective analysis is difficult due to the presence of irrelevant information. To accurately extract target information, this paper first proposes a 3D data array block concept, which enhances the feature relevance of target data blocks while expanding the data volume. An energy density window method is also proposed to enhance horizontal cross-sectional pipeline signals. Furthermore, a model named PR3DCNN for pipeline recognition is developed based on 3D convolutional neural networks and residual modules. Experimental results demonstrate that PR3DCNN has a classification accuracy of 0.871 for pipelines. After strengthening with 3D data array blocks and the energy density window, the PR-EDW-B model achieves an accuracy of 0.900, and can also classify the pipeline material and calculate its orientation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信