{"title":"Entropy-centric framework for understanding and managing project dynamics in construction","authors":"Elyar Pourrahimian, Diana Salhab, Farook Hamzeh, Simaan AbouRizk","doi":"10.1016/j.autcon.2024.105928","DOIUrl":null,"url":null,"abstract":"Traditional construction management methodologies often fail to address unforeseen challenges and uncertainties. This paper highlights that projects can exist in different states, often unidentified by project managers. These varying states necessitate different approaches, indicating that one-size-fits-all methods are insufficient. Using project data, entropy calculations, and simulations within a Design Science Research methodology, this paper offers indicators for evaluating project states and improving decision-making. The application of ChaosCompass to eight real-world projects showed higher entropy in projects exceeding budgets and schedules, indicating greater disorder and unpredictability. Conversely, projects on budget and schedule displayed more controlled progress. The findings reveal a significant correlation between high entropy and low forecast accuracy, underscoring entropy's critical role in project dynamics. This paper advocates an entropy-based approach to construction management, promising a more resilient and adaptable framework to address modern project complexities.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"249 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional construction management methodologies often fail to address unforeseen challenges and uncertainties. This paper highlights that projects can exist in different states, often unidentified by project managers. These varying states necessitate different approaches, indicating that one-size-fits-all methods are insufficient. Using project data, entropy calculations, and simulations within a Design Science Research methodology, this paper offers indicators for evaluating project states and improving decision-making. The application of ChaosCompass to eight real-world projects showed higher entropy in projects exceeding budgets and schedules, indicating greater disorder and unpredictability. Conversely, projects on budget and schedule displayed more controlled progress. The findings reveal a significant correlation between high entropy and low forecast accuracy, underscoring entropy's critical role in project dynamics. This paper advocates an entropy-based approach to construction management, promising a more resilient and adaptable framework to address modern project complexities.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.