Automated six-degree-of-freedom Stewart platform for heavy floor tiling

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Siwei Chang, Zemin Lyu, Jinhua Chen, Tong Hu, Rui Feng, Haobo Liang
{"title":"Automated six-degree-of-freedom Stewart platform for heavy floor tiling","authors":"Siwei Chang, Zemin Lyu, Jinhua Chen, Tong Hu, Rui Feng, Haobo Liang","doi":"10.1016/j.autcon.2024.105932","DOIUrl":null,"url":null,"abstract":"While existing floor tiling robots provide automated tiling for small tiles, robots designed for large and heavy tiles are rare. This paper develops a six-degree-of-freedom Stewart platform-based floor tiling robot for automated tiling of heavy tiles. The key contributions of this paper are: 1) establishing mechanical and kinematic models for a parallel robot to enhance the payload capacity of existing floor tiling robots. 2) designing a dual-camera system for precise visual alignment by capturing tile corner points from a complete perspective. Experimental validation demonstrated the robot's ability to automatically tile heavy floor tiles, with highly synchronized motions. The dual camera system achieved angle and distance deviations within ±0.001° and 0.5 mm. Quantitative analysis using the Borg RPE scale and EMG signals validated a reduction in physical strain. This research provides a feasible solution for automating heavy floor tile installation, effectively mitigating physical fatigue while enhancing the tiling alignment precision.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"22 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105932","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While existing floor tiling robots provide automated tiling for small tiles, robots designed for large and heavy tiles are rare. This paper develops a six-degree-of-freedom Stewart platform-based floor tiling robot for automated tiling of heavy tiles. The key contributions of this paper are: 1) establishing mechanical and kinematic models for a parallel robot to enhance the payload capacity of existing floor tiling robots. 2) designing a dual-camera system for precise visual alignment by capturing tile corner points from a complete perspective. Experimental validation demonstrated the robot's ability to automatically tile heavy floor tiles, with highly synchronized motions. The dual camera system achieved angle and distance deviations within ±0.001° and 0.5 mm. Quantitative analysis using the Borg RPE scale and EMG signals validated a reduction in physical strain. This research provides a feasible solution for automating heavy floor tile installation, effectively mitigating physical fatigue while enhancing the tiling alignment precision.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信