{"title":"Automated six-degree-of-freedom Stewart platform for heavy floor tiling","authors":"Siwei Chang, Zemin Lyu, Jinhua Chen, Tong Hu, Rui Feng, Haobo Liang","doi":"10.1016/j.autcon.2024.105932","DOIUrl":null,"url":null,"abstract":"While existing floor tiling robots provide automated tiling for small tiles, robots designed for large and heavy tiles are rare. This paper develops a six-degree-of-freedom Stewart platform-based floor tiling robot for automated tiling of heavy tiles. The key contributions of this paper are: 1) establishing mechanical and kinematic models for a parallel robot to enhance the payload capacity of existing floor tiling robots. 2) designing a dual-camera system for precise visual alignment by capturing tile corner points from a complete perspective. Experimental validation demonstrated the robot's ability to automatically tile heavy floor tiles, with highly synchronized motions. The dual camera system achieved angle and distance deviations within ±0.001° and 0.5 mm. Quantitative analysis using the Borg RPE scale and EMG signals validated a reduction in physical strain. This research provides a feasible solution for automating heavy floor tile installation, effectively mitigating physical fatigue while enhancing the tiling alignment precision.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"22 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105932","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While existing floor tiling robots provide automated tiling for small tiles, robots designed for large and heavy tiles are rare. This paper develops a six-degree-of-freedom Stewart platform-based floor tiling robot for automated tiling of heavy tiles. The key contributions of this paper are: 1) establishing mechanical and kinematic models for a parallel robot to enhance the payload capacity of existing floor tiling robots. 2) designing a dual-camera system for precise visual alignment by capturing tile corner points from a complete perspective. Experimental validation demonstrated the robot's ability to automatically tile heavy floor tiles, with highly synchronized motions. The dual camera system achieved angle and distance deviations within ±0.001° and 0.5 mm. Quantitative analysis using the Borg RPE scale and EMG signals validated a reduction in physical strain. This research provides a feasible solution for automating heavy floor tile installation, effectively mitigating physical fatigue while enhancing the tiling alignment precision.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.