Neural topic modeling of machine learning applications in building: Key topics, algorithms, and evolution patterns

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Peng Zhou, Yifan Qi, Qian Yang, Yuan Chang
{"title":"Neural topic modeling of machine learning applications in building: Key topics, algorithms, and evolution patterns","authors":"Peng Zhou, Yifan Qi, Qian Yang, Yuan Chang","doi":"10.1016/j.autcon.2024.105890","DOIUrl":null,"url":null,"abstract":"The application of machine learning (ML) in the building domain has rapidly evolved due to developments in ML algorithms. Abundant studies have reviewed the use of ML algorithms to address building-domain-related challenges, but some research questions remain unclear: (i) what is the landscape of ML application topics in building domain, (ii) what are the preferences among different ML application topics and algorithms, and (iii) how these topics, ML algorithms, and their preferences evolve until forming current landscape. To address these aspects, an ML-based topic modeling (TM) approach was used in this paper to identify all ML application topics, elucidate the horizontal correlation and vertical knowledge hierarchy among the topics to reveal their static correlation and dynamic evolution with ML algorithms. Several findings that answered each research question were drawn, and recommendations that can facilitate balanced and rational ML advancements in the building domain are proposed for future research.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"46 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105890","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The application of machine learning (ML) in the building domain has rapidly evolved due to developments in ML algorithms. Abundant studies have reviewed the use of ML algorithms to address building-domain-related challenges, but some research questions remain unclear: (i) what is the landscape of ML application topics in building domain, (ii) what are the preferences among different ML application topics and algorithms, and (iii) how these topics, ML algorithms, and their preferences evolve until forming current landscape. To address these aspects, an ML-based topic modeling (TM) approach was used in this paper to identify all ML application topics, elucidate the horizontal correlation and vertical knowledge hierarchy among the topics to reveal their static correlation and dynamic evolution with ML algorithms. Several findings that answered each research question were drawn, and recommendations that can facilitate balanced and rational ML advancements in the building domain are proposed for future research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信