{"title":"Visual–tactile learning of robotic cable-in-duct installation skills","authors":"Boyi Duan, Kun Qian, Aohua Liu, Shan Luo","doi":"10.1016/j.autcon.2024.105905","DOIUrl":null,"url":null,"abstract":"Cable-in-duct installation is one of the most challenging contact-rich interior finishing tasks for construction robots. Such precise robotic cable manipulation skills are expected to be endowed with high adaptability towards unstructured on-site construction activities via Sim2Real transfer. This paper presents a Sim2Real transferable reinforcement learning (RL) policy learning method for multi-stage robotic cable-in-duct installation, employing reward shaping to support unified task completion through a multi-stage RL policy. Specifically, the Foreground-aware Siamese Tactile Regression Network (FSTR-Net) is introduced as a feature-level unsupervised domain adaptation method to enhance the Sim2Real transfer of the RL strategy. Evaluations demonstrate that the robotic skill for cable-in-duct installation attains a success rate exceeding 98% in the simulator. FSTR-Net achieves over 99% accuracy for tactile-based in-hand fish tape pose estimation. Furthermore, real-world experiments show an average success rate of 95.8%, validating the RL strategy’s generalization and the approach’s effectiveness in mitigating the domain gap.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"8 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105905","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cable-in-duct installation is one of the most challenging contact-rich interior finishing tasks for construction robots. Such precise robotic cable manipulation skills are expected to be endowed with high adaptability towards unstructured on-site construction activities via Sim2Real transfer. This paper presents a Sim2Real transferable reinforcement learning (RL) policy learning method for multi-stage robotic cable-in-duct installation, employing reward shaping to support unified task completion through a multi-stage RL policy. Specifically, the Foreground-aware Siamese Tactile Regression Network (FSTR-Net) is introduced as a feature-level unsupervised domain adaptation method to enhance the Sim2Real transfer of the RL strategy. Evaluations demonstrate that the robotic skill for cable-in-duct installation attains a success rate exceeding 98% in the simulator. FSTR-Net achieves over 99% accuracy for tactile-based in-hand fish tape pose estimation. Furthermore, real-world experiments show an average success rate of 95.8%, validating the RL strategy’s generalization and the approach’s effectiveness in mitigating the domain gap.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.