Amir Alamooti , Adil Baigadilov , Idriss Sawadogo , Richard Martel , Dorian Davarzani , Azita Ahmadi-Sénichault , Stéfan Colombano
{"title":"Mobilization of DNAPL lenses in heterogeneous aquifers using shear-thinning PEO polymers: Experimental and numerical study","authors":"Amir Alamooti , Adil Baigadilov , Idriss Sawadogo , Richard Martel , Dorian Davarzani , Azita Ahmadi-Sénichault , Stéfan Colombano","doi":"10.1016/j.watres.2024.122952","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer solution injection has emerged as a promising method for the remediation of NAPL (non-aqueous phase liquids)-contaminated aquifers. This technique enhances recovery efficiency by modifying viscous forces, stabilizing the displacement front, and minimizing channeling effects. However, there remains a significant gap in understanding the behavior of polymer solutions, particularly those with different molecular weights (MW), for mobilizing DNAPL (dense non-aqueous phase liquids) trapped in heterogeneous aquifers, especially within low-permeability layers. In this study, we address this gap by investigating the mobilization of DNAPL lenses confined by low-permeability layers through the injection of polyethylene oxide (PEO) polymers of varying MW. PEO solutions with MW of 5 M (million) and 8 Mg/mol displayed shear-thinning behavior for shear rates of 0.01 to 100 s<sup>-1</sup>, while the 1 Mg/mol solution showed shear-thinning below 10 s<sup>-1</sup> and Newtonian behavior above. PEO solutions in porous media exhibit Newtonian behavior at low-to-moderate shear rates for all MWs, likely due to confinement-limited entanglement.</div><div>Adsorption studies found non-significant PEO adsorption on soil surfaces, likely due to its large molecular size. Post-flushing of PEO-saturated columns with water led to notable permeability reductions attributed to viscous fingering. Column tests indicated a decrease of the residual DNAPL saturation with the capillary number (Ca), more sharply in low permeability soils.</div><div>2D cell tests identified three stages of DNAPL mobilization: initial stabilization, sharp recovery increase upon PEO arrival, and a final stabilization at residual saturation. The duration of each transition was found to be influenced by concentration. Numerical simulations accurately mirrored these stages and provided additional insights into PEO viscosity distribution and DNAPL mobilization patterns in heterogeneous media. The results highlighted that higher injection rates promote mobilization from the two low permeability layers surrounding the DNAPL bank from both sides and the upper zone, while lower rates mainly drive mobilization from the upper side. Using numerical simulations the performance of PEO injection on displacement of DNAPL in multiple lenses and various position of recovery points was evaluated.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"273 ","pages":"Article 122952"},"PeriodicalIF":12.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424018529","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer solution injection has emerged as a promising method for the remediation of NAPL (non-aqueous phase liquids)-contaminated aquifers. This technique enhances recovery efficiency by modifying viscous forces, stabilizing the displacement front, and minimizing channeling effects. However, there remains a significant gap in understanding the behavior of polymer solutions, particularly those with different molecular weights (MW), for mobilizing DNAPL (dense non-aqueous phase liquids) trapped in heterogeneous aquifers, especially within low-permeability layers. In this study, we address this gap by investigating the mobilization of DNAPL lenses confined by low-permeability layers through the injection of polyethylene oxide (PEO) polymers of varying MW. PEO solutions with MW of 5 M (million) and 8 Mg/mol displayed shear-thinning behavior for shear rates of 0.01 to 100 s-1, while the 1 Mg/mol solution showed shear-thinning below 10 s-1 and Newtonian behavior above. PEO solutions in porous media exhibit Newtonian behavior at low-to-moderate shear rates for all MWs, likely due to confinement-limited entanglement.
Adsorption studies found non-significant PEO adsorption on soil surfaces, likely due to its large molecular size. Post-flushing of PEO-saturated columns with water led to notable permeability reductions attributed to viscous fingering. Column tests indicated a decrease of the residual DNAPL saturation with the capillary number (Ca), more sharply in low permeability soils.
2D cell tests identified three stages of DNAPL mobilization: initial stabilization, sharp recovery increase upon PEO arrival, and a final stabilization at residual saturation. The duration of each transition was found to be influenced by concentration. Numerical simulations accurately mirrored these stages and provided additional insights into PEO viscosity distribution and DNAPL mobilization patterns in heterogeneous media. The results highlighted that higher injection rates promote mobilization from the two low permeability layers surrounding the DNAPL bank from both sides and the upper zone, while lower rates mainly drive mobilization from the upper side. Using numerical simulations the performance of PEO injection on displacement of DNAPL in multiple lenses and various position of recovery points was evaluated.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.