Mitochondria Localized Anticancer Iridium(III) Prodrugs for Targeted Delivery of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors and Cytotoxic Iridium(III) Complex

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Tejal Dixit, Monika Negi, V. Venkatesh
{"title":"Mitochondria Localized Anticancer Iridium(III) Prodrugs for Targeted Delivery of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors and Cytotoxic Iridium(III) Complex","authors":"Tejal Dixit, Monika Negi, V. Venkatesh","doi":"10.1021/acs.inorgchem.4c03950","DOIUrl":null,"url":null,"abstract":"Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane. Among the synthesized prodrugs, IrThpy@L2 was found to exhibit the potent cytotoxicity (IC<sub>50</sub> = 30.93 nM) against HCT116 cell line when compared with bare Mcl-1 inhibitors (IC<sub>50</sub> &gt; 100 μM). Mechanistic studies further revealed that IrThpy@L2 quickly gets internalized inside the mitochondria of HCT116 cells and undergoes activation in the presence of overexpressed esterase which leads to the release of two cytotoxic species i.e. Mcl-1 inhibitors (I-2) and cytotoxic iridium(III) complex (IrThpy@OH). The improved cytotoxicity of IrThpy@L2 is due to the mitochondria targeting ability of iridium(III) prodrug, subsequent esterase activated release of I-2 to inhibit Mcl-1 protein and IrThpy@OH to generate reactive oxygen species (ROS). After prodrug activation, the released cytotoxic species cause mitochondrial membrane depolarization, activate a cascade of mitochondria-mediated cell death events, and arrest the cell cycle in S-phase which leads to apoptosis. The potent anticancer activity of IrThpy@L2 was further evident from the drastic morphological changes, size reduction in the solid tumor mimicking 3D multicellular tumor spheroids (MCTS) of HCT116.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"13 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03950","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane. Among the synthesized prodrugs, IrThpy@L2 was found to exhibit the potent cytotoxicity (IC50 = 30.93 nM) against HCT116 cell line when compared with bare Mcl-1 inhibitors (IC50 > 100 μM). Mechanistic studies further revealed that IrThpy@L2 quickly gets internalized inside the mitochondria of HCT116 cells and undergoes activation in the presence of overexpressed esterase which leads to the release of two cytotoxic species i.e. Mcl-1 inhibitors (I-2) and cytotoxic iridium(III) complex (IrThpy@OH). The improved cytotoxicity of IrThpy@L2 is due to the mitochondria targeting ability of iridium(III) prodrug, subsequent esterase activated release of I-2 to inhibit Mcl-1 protein and IrThpy@OH to generate reactive oxygen species (ROS). After prodrug activation, the released cytotoxic species cause mitochondrial membrane depolarization, activate a cascade of mitochondria-mediated cell death events, and arrest the cell cycle in S-phase which leads to apoptosis. The potent anticancer activity of IrThpy@L2 was further evident from the drastic morphological changes, size reduction in the solid tumor mimicking 3D multicellular tumor spheroids (MCTS) of HCT116.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信