Maximizing dataset variability in agricultural surveys with spatial sampling based on MaxVol matrix approximation

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Anna Petrovskaia, Mikhail Gasanov, Artyom Nikitin, Polina Tregubova, Ivan Oseledets
{"title":"Maximizing dataset variability in agricultural surveys with spatial sampling based on MaxVol matrix approximation","authors":"Anna Petrovskaia, Mikhail Gasanov, Artyom Nikitin, Polina Tregubova, Ivan Oseledets","doi":"10.1007/s11119-024-10197-y","DOIUrl":null,"url":null,"abstract":"<p>Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS), simple random sampling (SRS) and Kennard-Stone algorithm (KS) to evaluate their ability to capture soil data distribution. We modeled spatial distributions of soil properties using simple kriging (SK) and regression kriging (RK) interpolation techniques and assessed the interpolation quality using Root Mean Square Error. According to the results, MaxVol performs similarly or better than popular sampling designs in describing soil distributions, particularly with a smaller number of points. This is valuable for costly and time-consuming field surveys. Both MaxVol and Kennard-Stone are deterministic algorithms, unlike cLHS and random sampling, providing a reliable sampling scheme. Thus, the proposed MaxVol algorithm enables obtaining soil property distributions based on environmental features.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10197-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS), simple random sampling (SRS) and Kennard-Stone algorithm (KS) to evaluate their ability to capture soil data distribution. We modeled spatial distributions of soil properties using simple kriging (SK) and regression kriging (RK) interpolation techniques and assessed the interpolation quality using Root Mean Square Error. According to the results, MaxVol performs similarly or better than popular sampling designs in describing soil distributions, particularly with a smaller number of points. This is valuable for costly and time-consuming field surveys. Both MaxVol and Kennard-Stone are deterministic algorithms, unlike cLHS and random sampling, providing a reliable sampling scheme. Thus, the proposed MaxVol algorithm enables obtaining soil property distributions based on environmental features.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信