Peng Zhai, Divakar R. Aireddy, Mark B. Berko, Ahmad Arshadi, Michael J. Zachman, David A. Cullen, Ye Xu, Kunlun Ding
{"title":"Anomalous Role of Carbon in Pd-Catalyzed Selective Hydrogenation","authors":"Peng Zhai, Divakar R. Aireddy, Mark B. Berko, Ahmad Arshadi, Michael J. Zachman, David A. Cullen, Ye Xu, Kunlun Ding","doi":"10.1002/anie.202421351","DOIUrl":null,"url":null,"abstract":"Carbonaceous species, including subsurface carbidic carbon and surface carbon, play crucial roles in heterogeneous catalysis. Many reports suggested the importance of subsurface carbon in the selective hydrogenation of alkynes over Pd-based catalysts. However, the role of surface carbon has been largely overlooked. We demonstrate that subsurface carbon in Pd is not responsible for the selectivity in acetylene hydrogenation. In contrast, the structure of surface carbonaceous species plays a decisive role in hydrogenation selectivity. Electron microscopy and spectroscopy evidence, along with theoretical modelling, reveal that partial graphitization of surface carbonaceous species results in unique spatial confinement of surface reaction intermediates, thus altering the reaction energy landscape in favour of ethylene desorption as opposed to over-hydrogenation. This mechanism for selectivity control is analogous to enzyme catalysis, where the active centers selectively attract reactants and release products. Similar mechanism might be present in CO/CO2 hydrogenation and alkane dehydrogenation reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421351","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonaceous species, including subsurface carbidic carbon and surface carbon, play crucial roles in heterogeneous catalysis. Many reports suggested the importance of subsurface carbon in the selective hydrogenation of alkynes over Pd-based catalysts. However, the role of surface carbon has been largely overlooked. We demonstrate that subsurface carbon in Pd is not responsible for the selectivity in acetylene hydrogenation. In contrast, the structure of surface carbonaceous species plays a decisive role in hydrogenation selectivity. Electron microscopy and spectroscopy evidence, along with theoretical modelling, reveal that partial graphitization of surface carbonaceous species results in unique spatial confinement of surface reaction intermediates, thus altering the reaction energy landscape in favour of ethylene desorption as opposed to over-hydrogenation. This mechanism for selectivity control is analogous to enzyme catalysis, where the active centers selectively attract reactants and release products. Similar mechanism might be present in CO/CO2 hydrogenation and alkane dehydrogenation reactions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.