A Scalable Pore-Space-Partitioned Metal-Organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhen-Hua Guo, Xue-Qian Wu, Ya-Pan Wu, Dong-Sheng Li, Guoping Yang, Yao-Yu Wang
{"title":"A Scalable Pore-Space-Partitioned Metal-Organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification","authors":"Zhen-Hua Guo, Xue-Qian Wu, Ya-Pan Wu, Dong-Sheng Li, Guoping Yang, Yao-Yu Wang","doi":"10.1002/anie.202421992","DOIUrl":null,"url":null,"abstract":"Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (> 99.9%) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C−H···O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (> 99.9%) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C−H···O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信