Single-Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nawres Lazaar, Siming Wu, Shanshan Qin, Abdessalem Hamrouni, Bidyut Bikash Sarma, Dimitry E. Doronkin, Nikita Denisov, Hinda Lachheb, Patrik Schmuki
{"title":"Single-Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency","authors":"Nawres Lazaar, Siming Wu, Shanshan Qin, Abdessalem Hamrouni, Bidyut Bikash Sarma, Dimitry E. Doronkin, Nikita Denisov, Hinda Lachheb, Patrik Schmuki","doi":"10.1002/anie.202416453","DOIUrl":null,"url":null,"abstract":"The use of metal single atoms (SAs) as co-catalysts on semiconductors has emerged as a promising technology to enhance their photocatalytic hydrogen production performance. In this study, we describe the deposition of very low amounts of Pt SAs (<0.1 at%) on exfoliated graphitic carbon nitride (C3N4) by a direct Pt-deposition approach from highly dilute chloroplatinic acid precursors. We find that – using this technique – a remarkably low loading of highly dispersed Pt SAs (0.03wt%) on C3N4 is sufficient to achieve a drastic decrease in the overall charge transfer resistance and a maximized photocatalytic efficiency. The resulting low-loaded Pt SAs/C3N4 provides a H2 production rate of 1.66 mmol/h/mg Pt, with a remarkable stability against agglomeration; even during prolonged photocatalytic reactions no sign of light-induced Pt agglomerations can be observed. We ascribe the high performance and stability to the site-selective, stable coordination of Pt within the C3N4 structure. Notably the H2 production rate of the low-loaded Pt SAs surpasses the activity of Pt SAs deposited by other techniques or nanoparticles at comparable or even higher loading — the optimized Pt SAs decorated C3N4 show ≈5.9 times higher rate than Pt NP decorated C3N4.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of metal single atoms (SAs) as co-catalysts on semiconductors has emerged as a promising technology to enhance their photocatalytic hydrogen production performance. In this study, we describe the deposition of very low amounts of Pt SAs (<0.1 at%) on exfoliated graphitic carbon nitride (C3N4) by a direct Pt-deposition approach from highly dilute chloroplatinic acid precursors. We find that – using this technique – a remarkably low loading of highly dispersed Pt SAs (0.03wt%) on C3N4 is sufficient to achieve a drastic decrease in the overall charge transfer resistance and a maximized photocatalytic efficiency. The resulting low-loaded Pt SAs/C3N4 provides a H2 production rate of 1.66 mmol/h/mg Pt, with a remarkable stability against agglomeration; even during prolonged photocatalytic reactions no sign of light-induced Pt agglomerations can be observed. We ascribe the high performance and stability to the site-selective, stable coordination of Pt within the C3N4 structure. Notably the H2 production rate of the low-loaded Pt SAs surpasses the activity of Pt SAs deposited by other techniques or nanoparticles at comparable or even higher loading — the optimized Pt SAs decorated C3N4 show ≈5.9 times higher rate than Pt NP decorated C3N4.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信