Operando Evolution of a Hybrid Metallic Alloy Interphase for Reversible Aqueous Zinc Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Mingqiang Liu, Dr. Kai Yang, Qiming Xie, Prof. Nantao Hu, Mingzheng Zhang, Dr. Ruwei Chen, Dr. Wei Zhang, Dr. Jichao Zhang, Dr. Feng Shao, Hongzhen He, Dr. Roby Soni, Dr. Xiaoxia Guo, Prof. Jinlong Yang, Prof. Guanjie He, Prof. Feng Pan, Dr. Lu Yao, Prof. Thomas S. Miller
{"title":"Operando Evolution of a Hybrid Metallic Alloy Interphase for Reversible Aqueous Zinc Batteries","authors":"Dr. Mingqiang Liu,&nbsp;Dr. Kai Yang,&nbsp;Qiming Xie,&nbsp;Prof. Nantao Hu,&nbsp;Mingzheng Zhang,&nbsp;Dr. Ruwei Chen,&nbsp;Dr. Wei Zhang,&nbsp;Dr. Jichao Zhang,&nbsp;Dr. Feng Shao,&nbsp;Hongzhen He,&nbsp;Dr. Roby Soni,&nbsp;Dr. Xiaoxia Guo,&nbsp;Prof. Jinlong Yang,&nbsp;Prof. Guanjie He,&nbsp;Prof. Feng Pan,&nbsp;Dr. Lu Yao,&nbsp;Prof. Thomas S. Miller","doi":"10.1002/anie.202416047","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase, no such layer forms in AZIBs. Herein, we have designed and engineered an operando evolved metallic alloy interphase for AZIBs. This interfacial layer is initially deposited in the form of a thin film of Ag and In, but develops in situ to become an intimate mix of an Ag<sub>x</sub>Zn<sub>y</sub> alloy and metallic indium. Importantly, this dual-heterometallic layer acts to synergistically regulate the migration of zinc ions through the alloy interphase and enables the dense and planar deposition of Zn, simultaneously overcoming all major drivers of Zn anode degradation. Symmetric and full cells containing this modified metallic zinc anode exhibit stable electrochemical performance, offering high-capacity retention. Hence, this scalable approach represents a viable route towards the commercial utilization of this energy storage system.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202416047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase, no such layer forms in AZIBs. Herein, we have designed and engineered an operando evolved metallic alloy interphase for AZIBs. This interfacial layer is initially deposited in the form of a thin film of Ag and In, but develops in situ to become an intimate mix of an AgxZny alloy and metallic indium. Importantly, this dual-heterometallic layer acts to synergistically regulate the migration of zinc ions through the alloy interphase and enables the dense and planar deposition of Zn, simultaneously overcoming all major drivers of Zn anode degradation. Symmetric and full cells containing this modified metallic zinc anode exhibit stable electrochemical performance, offering high-capacity retention. Hence, this scalable approach represents a viable route towards the commercial utilization of this energy storage system.

Abstract Image

可逆水锌电池混合金属合金界面相的操作演化
水性锌离子电池(azib)被广泛认为是可行的未来能源存储解决方案,特别是在低成本的固定应用中。然而,锌阳极的界面不稳定性对锌离子系统的商业潜力构成了重大挑战,促进了一系列副反应,包括自发腐蚀、析氢和枝晶生长,这些副反应会破坏电池性能,降低库仑效率(CE),最终导致电池早期失效。虽然其他商业上相关的电池系统受益于自发形成的固体电解质界面(SEI),但在azib中没有这样的层。在此,我们设计并制造了一种用于azib的operando进化金属合金界面相。该界面层最初以Ag和in薄膜的形式沉积,但在原位发展成为AgxZny合金和金属铟的亲密混合物。重要的是,这种双异质金属层协同调节锌离子通过合金界面的迁移,使锌致密、平面沉积,同时克服了锌阳极降解的所有主要驱动因素。含有这种改性金属锌阳极的对称和完整电池表现出稳定的电化学性能,提供高容量保持。因此,这种可扩展的方法代表了这种储能系统商业利用的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信