{"title":"Layered Deep-UV Optical Crystal KZn₂BO₃Br₂ as a High-κ Dielectric for 2D Electronic Devices","authors":"Yixiang Li, Chuanyong Jian, Jiashuai Yuan, Wenting Hong, Yu Yao, Zhipeng Fu, Bicheng Wang, Qian Cai, Wei Liu","doi":"10.1002/adma.202409773","DOIUrl":null,"url":null,"abstract":"<p>The development of dielectrics with atomic planes and van der Waals (vdW) interfaces is essential for enhancing the performance of 2D devices. However, vdW dielectrics often have smaller bandgaps compared to traditional 3D dielectrics, limiting their options. This study introduces AZBX (AZn₂BO₃X₂, where A = K or Rb, X = Cl or Br), a nonlinear deep-ultraviolet optical crystal, as a quasi-vdW layered dielectric ideal for 2D electronic devices. Focusing on KZBB, it's excellent dielectric properties, including a wide bandgap, high dielectric constant (high-κ), and smooth interfaces are demonstrated. When used as the top gate dielectric in a KZBB/MoS₂ field-effect transistor (FET) with MoS₂ channels and graphene contacts, the device exhibits outstanding performance, with a steep subthreshold swing (≈ 73 mV dec<sup>−1</sup>), high on/off ratio (≈ 10⁷), negligible hysteresis (0–8 mV), and stable, low leakage current (≈10⁻⁷ A cm<sup>−</sup><sup>2</sup>) before breakdown. This work expands the 2D material and dielectric landscape and highlights the strong potential of AZBX as high-performance dielectrics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 5","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202409773","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of dielectrics with atomic planes and van der Waals (vdW) interfaces is essential for enhancing the performance of 2D devices. However, vdW dielectrics often have smaller bandgaps compared to traditional 3D dielectrics, limiting their options. This study introduces AZBX (AZn₂BO₃X₂, where A = K or Rb, X = Cl or Br), a nonlinear deep-ultraviolet optical crystal, as a quasi-vdW layered dielectric ideal for 2D electronic devices. Focusing on KZBB, it's excellent dielectric properties, including a wide bandgap, high dielectric constant (high-κ), and smooth interfaces are demonstrated. When used as the top gate dielectric in a KZBB/MoS₂ field-effect transistor (FET) with MoS₂ channels and graphene contacts, the device exhibits outstanding performance, with a steep subthreshold swing (≈ 73 mV dec−1), high on/off ratio (≈ 10⁷), negligible hysteresis (0–8 mV), and stable, low leakage current (≈10⁻⁷ A cm−2) before breakdown. This work expands the 2D material and dielectric landscape and highlights the strong potential of AZBX as high-performance dielectrics.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.