Highly Efficient Synthesis of α-Amino Acids via Electrocatalytic C-N Coupling Reaction Over an Atomically Dispersed Iron Loaded Defective TiO2

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhonghuan Zhu, Yimin Jiang, Leitao Xu, Qizheng An, Ta Thi Thuy Nga, Junlin Chen, Yun Fan, Qinghua Liu, Chung-Li Dong, Shuangyin Wang, Yuqin Zou
{"title":"Highly Efficient Synthesis of α-Amino Acids via Electrocatalytic C-N Coupling Reaction Over an Atomically Dispersed Iron Loaded Defective TiO2","authors":"Zhonghuan Zhu, Yimin Jiang, Leitao Xu, Qizheng An, Ta Thi Thuy Nga, Junlin Chen, Yun Fan, Qinghua Liu, Chung-Li Dong, Shuangyin Wang, Yuqin Zou","doi":"10.1002/adma.202409864","DOIUrl":null,"url":null,"abstract":"The synthesis of <i>α</i>-amino acids via the electrocatalytic C-N coupling attracted extensive attention owing to the mild reaction conditions, controllable reaction parameters, and atom economy. However, the <i>α</i>-amino acid yield remains unsatisfying. Herein, the efficient electrocatalytic synthesis of α-amino acids is achieved with an atomically dispersed Fe loaded defective TiO<sub>2</sub> monolithic electrocatalyst (<sub>ad</sub>Fe-TiO<sub>x</sub>/Ti). The desired electrocatalyst composition for the hydrogenation of oxime is screened. The prepared <sub>ad</sub>Fe-TiO<sub>x</sub>/Ti exhibited a high glyoxylic acid conversion of ≈100% and a glycine selectivity of 80.2%. The electrochemical experiments and theoretical calculations demonstrated that atomically dispersed Fe (<sub>ad</sub>Fe) sites and oxygen vacancies (OVs) enhanced the adsorption of glyoxylic acid (GA), glyoxylic oxime (GO), and nitrate (NO<sub>3</sub><sup>−</sup>). <sub>ad</sub>Fe sites further promote the step of H<sub>2</sub>NO<sup>*</sup> → H<sub>2</sub>NOH<sup>*</sup> in the conversion of NO<sub>3</sub><sup>−</sup> to hydroxylamine (NH<sub>2</sub>OH) and the step of NH-CH<sub>2</sub>-COOH<sup>*</sup> → NH<sub>2</sub>-CH<sub>2</sub>-COOH<sup>*</sup> in the reduction of GO to glycine. The coupling pathway and the critical intermediate are revealed by synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy and differential electrochemical mass spectrometry (DEMS). Additionally, six other <i>α</i>-amino acids are successfully synthesized by the <sub>ad</sub>Fe-TiO<sub>x</sub>/Ti, showcasing its versatility in the electrosynthesis of <i>α</i>-amino acids. This work provides an efficient electrocatalyst for the C-N coupling synthesis of α-amino acids.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"142 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409864","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of α-amino acids via the electrocatalytic C-N coupling attracted extensive attention owing to the mild reaction conditions, controllable reaction parameters, and atom economy. However, the α-amino acid yield remains unsatisfying. Herein, the efficient electrocatalytic synthesis of α-amino acids is achieved with an atomically dispersed Fe loaded defective TiO2 monolithic electrocatalyst (adFe-TiOx/Ti). The desired electrocatalyst composition for the hydrogenation of oxime is screened. The prepared adFe-TiOx/Ti exhibited a high glyoxylic acid conversion of ≈100% and a glycine selectivity of 80.2%. The electrochemical experiments and theoretical calculations demonstrated that atomically dispersed Fe (adFe) sites and oxygen vacancies (OVs) enhanced the adsorption of glyoxylic acid (GA), glyoxylic oxime (GO), and nitrate (NO3). adFe sites further promote the step of H2NO* → H2NOH* in the conversion of NO3 to hydroxylamine (NH2OH) and the step of NH-CH2-COOH* → NH2-CH2-COOH* in the reduction of GO to glycine. The coupling pathway and the critical intermediate are revealed by synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy and differential electrochemical mass spectrometry (DEMS). Additionally, six other α-amino acids are successfully synthesized by the adFe-TiOx/Ti, showcasing its versatility in the electrosynthesis of α-amino acids. This work provides an efficient electrocatalyst for the C-N coupling synthesis of α-amino acids.

Abstract Image

原子分散铁负载缺陷TiO2上电催化C-N偶联反应高效合成α-氨基酸
电催化C-N偶联法合成α-氨基酸因其反应条件温和、反应参数可控、原子经济性等优点而受到广泛关注。但α-氨基酸的产率仍不理想。本文采用原子分散Fe负载缺陷TiO2单片电催化剂(adFe-TiOx/Ti)实现了α-氨基酸的高效电催化合成。筛选了肟加氢所需的电催化剂组合物。制备的adFe-TiOx/Ti具有≈100%的高乙醛酸转化率和80.2%的甘氨酸选择性。电化学实验和理论计算表明,原子分散的Fe (adFe)位点和氧空位(OVs)增强了对乙醛酸(GA)、乙醛肟(GO)和硝酸盐(NO3−)的吸附。adFe位点进一步促进了NO3−转化为羟胺(NH2OH)过程中H2NO*→H2NOH*和GO还原为甘氨酸过程中nhh - ch2 - cooh *→NH2-CH2-COOH*的步骤。利用同步辐射傅里叶变换红外光谱(SR-FTIR)和差分电化学质谱(DEMS)揭示了耦合途径和临界中间体。此外,adFe-TiOx/Ti还成功合成了6种α-氨基酸,显示了其在α-氨基酸电合成中的多功能性。本研究为α-氨基酸的C-N偶联合成提供了一种高效的电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信