Chemical Composition of Secondary Organic Aerosol Formed from the Oxidation of Semivolatile Isoprene Epoxydiol Isomerization Products

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Molly Frauenheim, John Offenberg, Zhenfa Zhang, Jason D. Surratt, Avram Gold
{"title":"Chemical Composition of Secondary Organic Aerosol Formed from the Oxidation of Semivolatile Isoprene Epoxydiol Isomerization Products","authors":"Molly Frauenheim, John Offenberg, Zhenfa Zhang, Jason D. Surratt, Avram Gold","doi":"10.1021/acs.est.4c06850","DOIUrl":null,"url":null,"abstract":"3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated “C<sub>5</sub>-alkene triols”, were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid-driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (<sup>•</sup>OH) as a potential source of secondary organic aerosol (SOA). <sup>•</sup>OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth. Compositions of low-volatility products in both the gas and particulate phases were established by high-resolution mass spectrometry measurements. Under conditions mimicking the Southeast USA (50% relative humidity, bulk seed aerosol pH 1.4), we estimate the SOA yield from <sup>•</sup>OH-initiated oxidation of 3-methylenebutane-1,2,4-triol to be 93.1%, equating to 1.95 ± 0.81 Tg C Yr<sup>-1</sup>, and from 3-methyltetrahydrofuran-2,4-diol oxidation to be 26.7%, equating to 1.76 ± 1.26 Tg C Yr<sup>-1</sup>. Previously unreported isoprene-derived oxidation products, 2,3-dihydroxy-2-(hydroxymethyl)propanal, 1,3,4-trihydroxybutan-2-one, and four organosulfates have been confirmed in ambient SOA, and aid in understanding isoprene oxidation pathways in HO<sub>2</sub><sup>•</sup> dominated environments as NO<sub><i>x</i></sub> levels continue to decline in the US. This work underlines the need for inclusion of partitioning of in-particle formed semivolatile products and their atmospheric oxidation pathways in atmospheric models.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"5 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06850","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated “C5-alkene triols”, were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid-driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (OH) as a potential source of secondary organic aerosol (SOA). OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth. Compositions of low-volatility products in both the gas and particulate phases were established by high-resolution mass spectrometry measurements. Under conditions mimicking the Southeast USA (50% relative humidity, bulk seed aerosol pH 1.4), we estimate the SOA yield from OH-initiated oxidation of 3-methylenebutane-1,2,4-triol to be 93.1%, equating to 1.95 ± 0.81 Tg C Yr-1, and from 3-methyltetrahydrofuran-2,4-diol oxidation to be 26.7%, equating to 1.76 ± 1.26 Tg C Yr-1. Previously unreported isoprene-derived oxidation products, 2,3-dihydroxy-2-(hydroxymethyl)propanal, 1,3,4-trihydroxybutan-2-one, and four organosulfates have been confirmed in ambient SOA, and aid in understanding isoprene oxidation pathways in HO2 dominated environments as NOx levels continue to decline in the US. This work underlines the need for inclusion of partitioning of in-particle formed semivolatile products and their atmospheric oxidation pathways in atmospheric models.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信