Challenges in Observation of Ultrafine Particles: Addressing Estimation Miscalculations and the Necessity of Temporal Trends

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Tzu-Chi Lin, Pei-Te Chiueh, Ta-Chih Hsiao
{"title":"Challenges in Observation of Ultrafine Particles: Addressing Estimation Miscalculations and the Necessity of Temporal Trends","authors":"Tzu-Chi Lin, Pei-Te Chiueh, Ta-Chih Hsiao","doi":"10.1021/acs.est.4c07460","DOIUrl":null,"url":null,"abstract":"Ultrafine particles (UFPs) pose a significant health risk, making comprehensive assessment essential. The influence of emission sources on particle concentrations is not only constrained by meteorological conditions but often intertwined with them, making it challenging to separate these effects. This study utilized valuable long-term particle number and size distribution (PNSD) data from 2018 to 2023 to develop a tree-based machine learning model enhanced with an interpretable component, incorporating temporal markers to characterize background or time series residuals. Our results demonstrated that, differing from PM<sub>2.5</sub>, which is significantly shaped by planetary boundary layer height, wind speed plays a crucial role in determining the particle number concentration (PNC), showing strong regional specificity. Furthermore, we systematically identified and analyzed anthropogenically influenced periodic trends. Notably, while Aitken mode observations are initially linked to traffic-related peaks, both Aitken and nucleation modes contribute to concentration peaks during rush hour periods on short-term impacts after deweather adjustment. Pollutant baseline concentrations are largely driven by human activities, with meteorological factors modulating their variability, and the secondary formation of UFPs is likely reflected in temporal residuals. This study provides a flexible framework for isolating meteorological effects, allowing more accurate assessment of anthropogenic impacts and targeted management strategies for UFP and PNC.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"10 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07460","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafine particles (UFPs) pose a significant health risk, making comprehensive assessment essential. The influence of emission sources on particle concentrations is not only constrained by meteorological conditions but often intertwined with them, making it challenging to separate these effects. This study utilized valuable long-term particle number and size distribution (PNSD) data from 2018 to 2023 to develop a tree-based machine learning model enhanced with an interpretable component, incorporating temporal markers to characterize background or time series residuals. Our results demonstrated that, differing from PM2.5, which is significantly shaped by planetary boundary layer height, wind speed plays a crucial role in determining the particle number concentration (PNC), showing strong regional specificity. Furthermore, we systematically identified and analyzed anthropogenically influenced periodic trends. Notably, while Aitken mode observations are initially linked to traffic-related peaks, both Aitken and nucleation modes contribute to concentration peaks during rush hour periods on short-term impacts after deweather adjustment. Pollutant baseline concentrations are largely driven by human activities, with meteorological factors modulating their variability, and the secondary formation of UFPs is likely reflected in temporal residuals. This study provides a flexible framework for isolating meteorological effects, allowing more accurate assessment of anthropogenic impacts and targeted management strategies for UFP and PNC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信