Research on the Structural and Magnetic Phase Transitions of CeMn2Ge2 Alloy

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Siyu Wang, Lin Ma, Lidong He, Danmin Liu, Yibo Wang, Changzeng Fan, Enke Liu, Cong Wang
{"title":"Research on the Structural and Magnetic Phase Transitions of CeMn2Ge2 Alloy","authors":"Siyu Wang, Lin Ma, Lidong He, Danmin Liu, Yibo Wang, Changzeng Fan, Enke Liu, Cong Wang","doi":"10.1021/acs.inorgchem.4c04248","DOIUrl":null,"url":null,"abstract":"Magnetic phase transitions play crucial roles in various material applications, including sensors, actuators, information storage, magnetic refrigeration, and so on. Typically, these magnetic phase transitions exhibit discontinuous first-order phase transitions. When a material undergoes a magnetic phase transition, it often exhibits simultaneous changes in both its crystal and electronic structures. However, the coupling relationship between the crystal structure and electronic structure during these phase transitions has not been well studied. This lack of understanding hinders our ability to integrate macroscopic physical phenomena with microscopic crystal and electronic structures. In this paper, we prepared single crystal and polycrystalline CeMn<sub>2</sub>Ge<sub>2</sub> alloy, which has been extensively studied in recent years as a material of skyrmions. The relationships between the magnetic phase transition and the crystal structure of CeMn<sub>2</sub>Ge<sub>2</sub> were investigated through magnetic measurements, variable-temperature X-ray diffraction (XRD), and experimental electron density analysis via the maximum entropy method (MEM). The results indicate that the antiferromagnetic phase transition at T<sub>N</sub> = 415 K is characterized by an increase in the intralayer Mn–Mn bond and a decrease in the Ge–Ge bond. More importantly, the ferromagnetic transition at T<sub>C</sub> = 315 K can be divided into two stages: the first stage involves the anisotropic transformation of Mn, and the second stage involves the electron enhancement of Mn. The combination of phase transition features and transport properties indicates strong anisotropy in CeMn<sub>2</sub>Ge<sub>2</sub>. Notably, our work reveals a coupling between a material’s physical properties, crystal structure, and electronic structure. Our study offers a new approach for determining the origin of magnetic phase transitions and the causes of their physical properties in materials at the electronic level.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"22 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04248","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic phase transitions play crucial roles in various material applications, including sensors, actuators, information storage, magnetic refrigeration, and so on. Typically, these magnetic phase transitions exhibit discontinuous first-order phase transitions. When a material undergoes a magnetic phase transition, it often exhibits simultaneous changes in both its crystal and electronic structures. However, the coupling relationship between the crystal structure and electronic structure during these phase transitions has not been well studied. This lack of understanding hinders our ability to integrate macroscopic physical phenomena with microscopic crystal and electronic structures. In this paper, we prepared single crystal and polycrystalline CeMn2Ge2 alloy, which has been extensively studied in recent years as a material of skyrmions. The relationships between the magnetic phase transition and the crystal structure of CeMn2Ge2 were investigated through magnetic measurements, variable-temperature X-ray diffraction (XRD), and experimental electron density analysis via the maximum entropy method (MEM). The results indicate that the antiferromagnetic phase transition at TN = 415 K is characterized by an increase in the intralayer Mn–Mn bond and a decrease in the Ge–Ge bond. More importantly, the ferromagnetic transition at TC = 315 K can be divided into two stages: the first stage involves the anisotropic transformation of Mn, and the second stage involves the electron enhancement of Mn. The combination of phase transition features and transport properties indicates strong anisotropy in CeMn2Ge2. Notably, our work reveals a coupling between a material’s physical properties, crystal structure, and electronic structure. Our study offers a new approach for determining the origin of magnetic phase transitions and the causes of their physical properties in materials at the electronic level.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信