Three-dimensionally structured MoS2@biochar breaks through the bottleneck in antibiotic wastewater treatment: greater efficiency and self-motivated oxidation pathway

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Kai Hu, Honghong Lyu, Zhenzhong Hu, Boxiong Shen, Jingchun Tang
{"title":"Three-dimensionally structured MoS2@biochar breaks through the bottleneck in antibiotic wastewater treatment: greater efficiency and self-motivated oxidation pathway","authors":"Kai Hu, Honghong Lyu, Zhenzhong Hu, Boxiong Shen, Jingchun Tang","doi":"10.1016/j.jhazmat.2024.136871","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) MoS<sub>2</sub> has been widely used to remove antibiotic. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS<sub>2</sub>/BMBC@MF) based on MoS<sub>2</sub> and biochar with melamine sponge as the backbone. Compared with the 2D material (MoS<sub>2</sub>/BMBC), 3MoS<sub>2</sub>/BMBC@MF performed significantly better in enrofloxacin (ENR) removal, with an increase in the removal degree from 60.8% to 88.1%, and acted mainly through the degradation pathway rather than relying solely on the adsorption effect. It was shown that the direct oxidation process (DOP) behind the 3D materials is the key to the self-activated oxidation pathway. The three-dimensional structure enhances the generation and transfer pathways of persistent free radicals (PFRs) and electrons, realizing a multi-dimensional activation mechanism through its unique three-dimensional network, which greatly improves the redox capacity of the material. Upon exposure to pollutants, 3MoS<sub>2</sub>/BMBC@MF generates carbon-centered radicals of PFRs, which degrade ENR through mediated electron transfer. Coupled with the three-dimensional structure that contributes to the homogeneous dispersion of the active substances, dense steric active centers are formed in the grid skeleton by redox cycling of Mo ions to degrade antibiotics via DOP. Meanwhile, 3MoS<sub>2</sub>/BMBC@MF possesses good recyclability and maintains high efficiency in recycling. The structural design of this material not only enhances the removal efficiency and reduces the environmental impact, but also provides new potentials and solutions for practical water treatment of antibiotic contaminants.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"42 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136871","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) MoS2 has been widely used to remove antibiotic. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS2/BMBC@MF) based on MoS2 and biochar with melamine sponge as the backbone. Compared with the 2D material (MoS2/BMBC), 3MoS2/BMBC@MF performed significantly better in enrofloxacin (ENR) removal, with an increase in the removal degree from 60.8% to 88.1%, and acted mainly through the degradation pathway rather than relying solely on the adsorption effect. It was shown that the direct oxidation process (DOP) behind the 3D materials is the key to the self-activated oxidation pathway. The three-dimensional structure enhances the generation and transfer pathways of persistent free radicals (PFRs) and electrons, realizing a multi-dimensional activation mechanism through its unique three-dimensional network, which greatly improves the redox capacity of the material. Upon exposure to pollutants, 3MoS2/BMBC@MF generates carbon-centered radicals of PFRs, which degrade ENR through mediated electron transfer. Coupled with the three-dimensional structure that contributes to the homogeneous dispersion of the active substances, dense steric active centers are formed in the grid skeleton by redox cycling of Mo ions to degrade antibiotics via DOP. Meanwhile, 3MoS2/BMBC@MF possesses good recyclability and maintains high efficiency in recycling. The structural design of this material not only enhances the removal efficiency and reduces the environmental impact, but also provides new potentials and solutions for practical water treatment of antibiotic contaminants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信