Kirigami Design Smart Contact Lens for Highly Sensitive Eyelid Pressure Measurement

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Wen Chen, Songhao Chen, Xiaoyu Zhao, Lan Yang, Yunbiao Zhao, Ruihua Wei, Jinfang Wu
{"title":"Kirigami Design Smart Contact Lens for Highly Sensitive Eyelid Pressure Measurement","authors":"Wen Chen, Songhao Chen, Xiaoyu Zhao, Lan Yang, Yunbiao Zhao, Ruihua Wei, Jinfang Wu","doi":"10.1021/acssensors.4c02361","DOIUrl":null,"url":null,"abstract":"Eyelid pressure is a crucial biomechanical parameter for ocular health and refractive status, yet measuring it poses challenges related to flexibility, sensitivity, and regional specificity. This study introduces a novel smart contact lens that incorporates kirigami designs and an iontronic capacitive sensing array to enhance flexibility and conformability. The unique structural composition of this device allows for precise and simultaneous monitoring of eyelid pressure in multiple regions with a high sensitivity and seamlessly fit across corneal curvatures. The efficacy of the sensor has been thoroughly confirmed through comprehensive evaluations in rabbits and porcine eyes, demonstrating improved conformity and sensitivity compared to conventional single-point sensors. Assessments have been conducted in various conditions, including under anesthesia and in awake states, as well as the deliberate alteration of intraocular pressure fluctuations, all affirming the exceptional accuracy in detecting eyelid pressure. We envision that the smart contact lens has the potential to revolutionize diagnosis and management of eyelid-related ocular diseases.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"41 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Eyelid pressure is a crucial biomechanical parameter for ocular health and refractive status, yet measuring it poses challenges related to flexibility, sensitivity, and regional specificity. This study introduces a novel smart contact lens that incorporates kirigami designs and an iontronic capacitive sensing array to enhance flexibility and conformability. The unique structural composition of this device allows for precise and simultaneous monitoring of eyelid pressure in multiple regions with a high sensitivity and seamlessly fit across corneal curvatures. The efficacy of the sensor has been thoroughly confirmed through comprehensive evaluations in rabbits and porcine eyes, demonstrating improved conformity and sensitivity compared to conventional single-point sensors. Assessments have been conducted in various conditions, including under anesthesia and in awake states, as well as the deliberate alteration of intraocular pressure fluctuations, all affirming the exceptional accuracy in detecting eyelid pressure. We envision that the smart contact lens has the potential to revolutionize diagnosis and management of eyelid-related ocular diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信