Contribution of Aftertreatment Technologies to Alleviating SOA and Toxicity Generation from Typical Diesel Engine-Emitted I/SVOCs

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yaoqiang Huo, Jianguo Liu, Di Wu, Yuankai Shao, Xiwen Song, Zihua Guo, Anlin Liu, Qing Li, Jianmin Chen
{"title":"Contribution of Aftertreatment Technologies to Alleviating SOA and Toxicity Generation from Typical Diesel Engine-Emitted I/SVOCs","authors":"Yaoqiang Huo, Jianguo Liu, Di Wu, Yuankai Shao, Xiwen Song, Zihua Guo, Anlin Liu, Qing Li, Jianmin Chen","doi":"10.1021/acs.est.4c09555","DOIUrl":null,"url":null,"abstract":"The removal capacity of aftertreatment technologies equipped on diesel exhaust in intermediate and semivolatile organic compounds (I/SVOCs) remains unclear. This study quantified the effect of typical aftertreatment technologies (China VI) on diesel engine-emitted I/SVOCs, related secondary organic aerosol (SOA), and toxic effects. The equipped aftertreatment devices could mitigate the emission factors (EFs) by 70.8 ± 3.4 to 82.5 ± 20.9% for I/SVOCs, 72.7 ± 18.6 to 77.5 ± 4.2% for SOA production, and 75.7 ± 9.3 to 82.4 ± 9.2% for toxic equivalent quantity (TEQ). Aftertreatment units are better for removing alkanes, benzenes, and ketones. The TEQ from the cold-start cycle is 1.3- to 5.7-fold higher than that from the hot-start cycle. In contrast, the EFs of ship-emitted I/SVOCs are 3.7- to 5.3-fold higher than those of diesel vehicles equipped with an aftertreatment system when burning the same fuel, leading to 2.1- to 3.0-fold higher SOA production and 3.1- to 6.7-fold TEQ. Implementation of control devices on marine diesel engines could reduce I/SVOC EFs, SOA production, and eye irritation TEQ of ships by 76.7 ± 12.2, 75.1 ± 12.2, and 79.1 ± 9.6%, respectively. These results indicate that it is vital to equip marine engines with aftertreatment technologies to improve air quality and protect human health.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09555","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The removal capacity of aftertreatment technologies equipped on diesel exhaust in intermediate and semivolatile organic compounds (I/SVOCs) remains unclear. This study quantified the effect of typical aftertreatment technologies (China VI) on diesel engine-emitted I/SVOCs, related secondary organic aerosol (SOA), and toxic effects. The equipped aftertreatment devices could mitigate the emission factors (EFs) by 70.8 ± 3.4 to 82.5 ± 20.9% for I/SVOCs, 72.7 ± 18.6 to 77.5 ± 4.2% for SOA production, and 75.7 ± 9.3 to 82.4 ± 9.2% for toxic equivalent quantity (TEQ). Aftertreatment units are better for removing alkanes, benzenes, and ketones. The TEQ from the cold-start cycle is 1.3- to 5.7-fold higher than that from the hot-start cycle. In contrast, the EFs of ship-emitted I/SVOCs are 3.7- to 5.3-fold higher than those of diesel vehicles equipped with an aftertreatment system when burning the same fuel, leading to 2.1- to 3.0-fold higher SOA production and 3.1- to 6.7-fold TEQ. Implementation of control devices on marine diesel engines could reduce I/SVOC EFs, SOA production, and eye irritation TEQ of ships by 76.7 ± 12.2, 75.1 ± 12.2, and 79.1 ± 9.6%, respectively. These results indicate that it is vital to equip marine engines with aftertreatment technologies to improve air quality and protect human health.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信