{"title":"Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution","authors":"Ruiqi Zheng, Shuyi Xu, Shifa Zhong, Xin Tong, Xin Yu, Yangying Zhao, Yongsheng Chen","doi":"10.1021/acs.est.4c08841","DOIUrl":null,"url":null,"abstract":"Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"42 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08841","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.