Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Ruiqi Zheng, Shuyi Xu, Shifa Zhong, Xin Tong, Xin Yu, Yangying Zhao, Yongsheng Chen
{"title":"Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution","authors":"Ruiqi Zheng, Shuyi Xu, Shifa Zhong, Xin Tong, Xin Yu, Yangying Zhao, Yongsheng Chen","doi":"10.1021/acs.est.4c08841","DOIUrl":null,"url":null,"abstract":"Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"42 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08841","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信